These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 8995603)
1. CD4, CXCR-4, and CCR-5 dependencies for infections by primary patient and laboratory-adapted isolates of human immunodeficiency virus type 1. Kozak SL; Platt EJ; Madani N; Ferro FE; Peden K; Kabat D J Virol; 1997 Feb; 71(2):873-82. PubMed ID: 8995603 [TBL] [Abstract][Full Text] [Related]
2. Infectious properties of human immunodeficiency virus type 1 mutants with distinct affinities for the CD4 receptor. Platt EJ; Madani N; Kozak SL; Kabat D J Virol; 1997 Feb; 71(2):883-90. PubMed ID: 8995604 [TBL] [Abstract][Full Text] [Related]
3. Usage of the coreceptors CCR-5, CCR-3, and CXCR-4 by primary and cell line-adapted human immunodeficiency virus type 2. Sol N; Ferchal F; Braun J; Pleskoff O; Tréboute C; Ansart I; Alizon M J Virol; 1997 Nov; 71(11):8237-44. PubMed ID: 9343175 [TBL] [Abstract][Full Text] [Related]
4. Antibodies to several conformation-dependent epitopes of gp120/gp41 inhibit CCR-5-dependent cell-to-cell fusion mediated by the native envelope glycoprotein of a primary macrophage-tropic HIV-1 isolate. Verrier FC; Charneau P; Altmeyer R; Laurent S; Borman AM; Girard M Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9326-31. PubMed ID: 9256481 [TBL] [Abstract][Full Text] [Related]
5. HIV-1 R5 Macrophage-Tropic Envelope Glycoprotein Trimers Bind CD4 with High Affinity, while the CD4 Binding Site on Non-macrophage-tropic, T-Tropic R5 Envelopes Is Occluded. Quitadamo B; Peters PJ; Repik A; O'Connell O; Mou Z; Koch M; Somasundaran M; Brody R; Luzuriaga K; Wallace A; Wang S; Lu S; McCauley S; Luban J; Duenas-Decamp M; Gonzalez-Perez MP; Clapham PR J Virol; 2018 Jan; 92(2):. PubMed ID: 29118121 [TBL] [Abstract][Full Text] [Related]
6. Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. Björndal A; Deng H; Jansson M; Fiore JR; Colognesi C; Karlsson A; Albert J; Scarlatti G; Littman DR; Fenyö EM J Virol; 1997 Oct; 71(10):7478-87. PubMed ID: 9311827 [TBL] [Abstract][Full Text] [Related]
7. Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. Simmons G; Wilkinson D; Reeves JD; Dittmar MT; Beddows S; Weber J; Carnegie G; Desselberger U; Gray PW; Weiss RA; Clapham PR J Virol; 1996 Dec; 70(12):8355-60. PubMed ID: 8970955 [TBL] [Abstract][Full Text] [Related]
8. Role of CCR5 in infection of primary macrophages and lymphocytes by macrophage-tropic strains of human immunodeficiency virus: resistance to patient-derived and prototype isolates resulting from the delta ccr5 mutation. Rana S; Besson G; Cook DG; Rucker J; Smyth RJ; Yi Y; Turner JD; Guo HH; Du JG; Peiper SC; Lavi E; Samson M; Libert F; Liesnard C; Vassart G; Doms RW; Parmentier M; Collman RG J Virol; 1997 Apr; 71(4):3219-27. PubMed ID: 9060685 [TBL] [Abstract][Full Text] [Related]
9. Adaptive mutations in the V3 loop of gp120 enhance fusogenicity of human immunodeficiency virus type 1 and enable use of a CCR5 coreceptor that lacks the amino-terminal sulfated region. Platt EJ; Kuhmann SE; Rose PP; Kabat D J Virol; 2001 Dec; 75(24):12266-78. PubMed ID: 11711617 [TBL] [Abstract][Full Text] [Related]
11. Polymorphisms in the CCR5 genes of African green monkeys and mice implicate specific amino acids in infections by simian and human immunodeficiency viruses. Kuhmann SE; Platt EJ; Kozak SL; Kabat D J Virol; 1997 Nov; 71(11):8642-56. PubMed ID: 9343222 [TBL] [Abstract][Full Text] [Related]
12. Macrophage-tropic and T-cell line-adapted chimeric strains of human immunodeficiency virus type 1 differ in their susceptibilities to neutralization by soluble CD4 at different temperatures. O'Brien WA; Mao SH; Cao Y; Moore JP J Virol; 1994 Aug; 68(8):5264-9. PubMed ID: 8035523 [TBL] [Abstract][Full Text] [Related]
13. A monoclonal antibody (12G5) directed against CXCR-4 inhibits infection with the dual-tropic human immunodeficiency virus type 1 isolate HIV-1(89.6) but not the T-tropic isolate HIV-1(HxB). Strizki JM; Turner JD; Collman RG; Hoxie J; González-Scarano F J Virol; 1997 Jul; 71(7):5678-83. PubMed ID: 9188648 [TBL] [Abstract][Full Text] [Related]
14. T-tropic human immunodeficiency virus type 1 (HIV-1)-derived V3 loop peptides directly bind to CXCR-4 and inhibit T-tropic HIV-1 infection. Sakaida H; Hori T; Yonezawa A; Sato A; Isaka Y; Yoshie O; Hattori T; Uchiyama T J Virol; 1998 Dec; 72(12):9763-70. PubMed ID: 9811711 [TBL] [Abstract][Full Text] [Related]
15. Preferential coreceptor utilization and cytopathicity by dual-tropic HIV-1 in human lymphoid tissue ex vivo. Glushakova S; Yi Y; Grivel JC; Singh A; Schols D; De Clercq E; Collman RG; Margolis L J Clin Invest; 1999 Sep; 104(5):R7-R11. PubMed ID: 10487781 [TBL] [Abstract][Full Text] [Related]
16. Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion. Picard L; Simmons G; Power CA; Meyer A; Weiss RA; Clapham PR J Virol; 1997 Jul; 71(7):5003-11. PubMed ID: 9188565 [TBL] [Abstract][Full Text] [Related]
17. Critical role of enhanced CD4 affinity in laboratory adaptation of human immunodeficiency virus type 1. Platt EJ; Kozak SL; Kabat D AIDS Res Hum Retroviruses; 2000 Jun; 16(9):871-82. PubMed ID: 10875613 [TBL] [Abstract][Full Text] [Related]
18. T-cell-line-tropic human immunodeficiency virus type 1 that is made resistant to stromal cell-derived factor 1alpha contains mutations in the envelope gp120 but does not show a switch in coreceptor use. Schols D; Esté JA; Cabrera C; De Clercq E J Virol; 1998 May; 72(5):4032-7. PubMed ID: 9557691 [TBL] [Abstract][Full Text] [Related]
19. Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. Kabat D; Kozak SL; Wehrly K; Chesebro B J Virol; 1994 Apr; 68(4):2570-7. PubMed ID: 8139036 [TBL] [Abstract][Full Text] [Related]