These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 8996221)
1. Blood-brain barrier permeability and bioavailability of a highly potent and mu-selective opioid receptor antagonist, CTAP: comparison with morphine. Abbruscato TJ; Thomas SA; Hruby VJ; Davis TP J Pharmacol Exp Ther; 1997 Jan; 280(1):402-9. PubMed ID: 8996221 [TBL] [Abstract][Full Text] [Related]
2. Potency differences for D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 as an antagonist of peptide and alkaloid micro-agonists in an antinociception assay. Sterious SN; Walker EA J Pharmacol Exp Ther; 2003 Jan; 304(1):301-9. PubMed ID: 12490605 [TBL] [Abstract][Full Text] [Related]
3. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice. Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958 [TBL] [Abstract][Full Text] [Related]
4. The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons. Chieng B; Connor M; Christie MJ Mol Pharmacol; 1996 Sep; 50(3):650-5. PubMed ID: 8794906 [TBL] [Abstract][Full Text] [Related]
6. [3H]-[H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2] ([3H]CTOP), a potent and highly selective peptide for mu opioid receptors in rat brain. Hawkins KN; Knapp RJ; Lui GK; Gulya K; Kazmierski W; Wan YP; Pelton JT; Hruby VJ; Yamamura HI J Pharmacol Exp Ther; 1989 Jan; 248(1):73-80. PubMed ID: 2563293 [TBL] [Abstract][Full Text] [Related]
7. Dual effects of DAMGO [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) on adenylyl cyclase activity: implications for mu-opioid receptor Gs coupling. Szücs M; Boda K; Gintzler AR J Pharmacol Exp Ther; 2004 Jul; 310(1):256-62. PubMed ID: 14996951 [TBL] [Abstract][Full Text] [Related]
8. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord. He L; Lee NM J Pharmacol Exp Ther; 1998 Jun; 285(3):1181-6. PubMed ID: 9618421 [TBL] [Abstract][Full Text] [Related]
9. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens. Hirose N; Murakawa K; Takada K; Oi Y; Suzuki T; Nagase H; Cools AR; Koshikawa N Neuroscience; 2005; 135(1):213-25. PubMed ID: 16111831 [TBL] [Abstract][Full Text] [Related]
10. H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2: a potent and selective antagonist opioid receptors. Gulya K; Lui GK; Pelton JT; Kazmierski W; Hruby VJ; Yamamura HI NIDA Res Monogr; 1986; 75():209-12. PubMed ID: 2893264 [TBL] [Abstract][Full Text] [Related]
11. Blocking mu opioid receptors in the spinal cord prevents the analgesic action by subsequent systemic opioids. Chen SR; Pan HL Brain Res; 2006 Apr; 1081(1):119-25. PubMed ID: 16499888 [TBL] [Abstract][Full Text] [Related]
12. The cardiovascular responses to mu opioid agonist and antagonist in conscious normal and obese rats. Hill-Pryor C; Lindsey D; Lapanowski K; Dunbar JC Peptides; 2006 Jun; 27(6):1520-6. PubMed ID: 16293344 [TBL] [Abstract][Full Text] [Related]
13. Activation of opioid mu receptors in caudal medullary raphe region inhibits the ventilatory response to hypercapnia in anesthetized rats. Zhang Z; Xu F; Zhang C; Liang X Anesthesiology; 2007 Aug; 107(2):288-97. PubMed ID: 17667574 [TBL] [Abstract][Full Text] [Related]
14. Effect of mu and kappa opioids on injury-induced microglial accumulation in leech CNS: involvement of the nitric oxide pathway. Yahyavi-Firouz-Abadi N; Tahsili-Fahadan P; Ostad SN Neuroscience; 2007 Feb; 144(3):1075-86. PubMed ID: 17169497 [TBL] [Abstract][Full Text] [Related]
15. Design and synthesis of conformationally constrained somatostatin analogues with high potency and specificity for mu opioid receptors. Pelton JT; Kazmierski W; Gulya K; Yamamura HI; Hruby VJ J Med Chem; 1986 Nov; 29(11):2370-5. PubMed ID: 2878079 [TBL] [Abstract][Full Text] [Related]
16. Pharmacological selectivity of CTAP in a warm water tail-withdrawal antinociception assay in rats. Steinmiller CL; Young AM Psychopharmacology (Berl); 2008 Jan; 195(4):497-507. PubMed ID: 17882404 [TBL] [Abstract][Full Text] [Related]
17. Cyclic somatostatin analogues as potent antagonists at mu-, but not delta- and kappa-opioid receptors mediating presynaptic inhibition of neurotransmitter release in the brain. Mulder AH; Wardeh G; Hogenboom F; Kazmierski W; Hruby VJ; Schoffelmeer AN Eur J Pharmacol; 1991 Nov; 205(1):1-6. PubMed ID: 1687463 [TBL] [Abstract][Full Text] [Related]
18. De novo design, synthesis, and pharmacology of alpha-melanocyte stimulating hormone analogues derived from somatostatin by a hybrid approach. Han G; Haskell-Luevano C; Kendall L; Bonner G; Hadley ME; Cone RD; Hruby VJ J Med Chem; 2004 Mar; 47(6):1514-26. PubMed ID: 14998337 [TBL] [Abstract][Full Text] [Related]
20. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat. Bickel U; Schumacher OP; Kang YS; Voigt K J Pharmacol Exp Ther; 1996 Jul; 278(1):107-13. PubMed ID: 8764341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]