These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8996664)

  • 1. Impact of pesticides to groundwater resources in an alluvial plain using a geographical information system.
    Riparbelli C; Ferioli A; Azimonti G; Regidore C; Battipede G; Maroni M
    Cent Eur J Public Health; 1996 Feb; 4(1):21-4. PubMed ID: 8996664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.
    Leone A; Ripa MN; Uricchio V; Deák J; Vargay Z
    J Environ Manage; 2009 Jul; 90(10):2969-78. PubMed ID: 18054423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand.
    Thapinta A; Hudak PF
    Environ Int; 2003 Apr; 29(1):87-93. PubMed ID: 12605941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a geographical information system for pesticide assessment on an Ecuadorian watershed.
    Matamoros DE; van Griensven A; van Biesen L; Vanrolleghem PA
    Water Sci Technol; 2005; 52(12):259-65. PubMed ID: 16477994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GIS-based procedure for site-specific risk assessment of pesticides for aquatic ecosystems.
    Sala S; Vighi M
    Ecotoxicol Environ Saf; 2008 Jan; 69(1):1-12. PubMed ID: 17935784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan.
    Babiker IS; Mohamed MA; Hiyama T; Kato K
    Sci Total Environ; 2005 Jun; 345(1-3):127-40. PubMed ID: 15919534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated modeling environment for statewide assessment of groundwater vulnerability from pesticide use in agriculture.
    Eason A; Tim US; Wang X
    Pest Manag Sci; 2004 Aug; 60(8):739-45. PubMed ID: 15307665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources.
    Goss M; Richards C
    J Environ Manage; 2008 Jun; 87(4):623-32. PubMed ID: 18158213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Geographical Information Systems and remote sensing technologies in parasitological epidemiology].
    Rinaldi L; Cascone C; Sibilio G; Musella V; Taddei R; Cringoli G
    Parassitologia; 2004 Jun; 46(1-2):71-4. PubMed ID: 15305690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.
    Grayson R; Kay P; Foulger M
    Water Sci Technol; 2008; 58(9):1797-802. PubMed ID: 19029721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A screening tool for vulnerability assessment of pesticide leaching to groundwater for the islands of Hawaii, USA.
    Stenemo F; Ray C; Yost R; Matsuda S
    Pest Manag Sci; 2007 Apr; 63(4):404-11. PubMed ID: 17315270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying crop vulnerability to groundwater abstraction: modelling and expert knowledge in a GIS.
    Procter C; Comber L; Betson M; Buckley D; Frost A; Lyons H; Riding A; Voyce K
    J Environ Manage; 2006 Nov; 81(3):296-306. PubMed ID: 16963176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agricultural land use and N losses to water: the case study of a fluvial park in northern Italy.
    Morari F; Lugato E; Borin M
    Water Sci Technol; 2003; 47(7-8):275-82. PubMed ID: 12793690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool.
    Nobre RC; Rotunno Filho OC; Mansur WJ; Nobre MM; Cosenza CA
    J Contam Hydrol; 2007 Dec; 94(3-4):277-92. PubMed ID: 17728007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Historical reconstruction of wastewater and land use impacts to groundwater used for public drinking water: exposure assessment using chemical data and GIS.
    Swartz CH; Rudel RA; Kachajian JR; Brody JG
    J Expo Anal Environ Epidemiol; 2003 Sep; 13(5):403-16. PubMed ID: 12973368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology for space-time classification of groundwater quality.
    Passarella G; Caputo MC
    Environ Monit Assess; 2006 Apr; 115(1-3):95-117. PubMed ID: 16502022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vulnerability of groundwater to pollution from agricultural diffuse sources: a case study.
    Muhammetoğlu H; Muhammetoğlu A; Soyupak S
    Water Sci Technol; 2002; 45(9):1-7. PubMed ID: 12079090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of groundwater vulnerability maps obtained through statistical methods.
    Sorichetta A; Masetti M; Ballabio C; Sterlacchini S; Beretta GP
    J Environ Manage; 2011 Apr; 92(4):1215-24. PubMed ID: 21208723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India.
    Saha D; Dhar YR; Vittala SS
    Environ Monit Assess; 2010 Jun; 165(1-4):179-91. PubMed ID: 19415511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transportation pathways of pesticides in two major watersheds of Istanbul, Turkey.
    Yazgan M; Tanik A
    Water Sci Technol; 2004; 49(3):165-72. PubMed ID: 15053112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.