These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8996786)

  • 61. Use of multiple profiles corresponding to a sequence alignment enables effective detection of remote homologues.
    Anand B; Gowri VS; Srinivasan N
    Bioinformatics; 2005 Jun; 21(12):2821-6. PubMed ID: 15817691
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DNA rotational positioning in a regulatory nucleosome is determined by base sequence. An algorithm to model the preferred superhelix.
    Piña B; Truss M; Ohlenbusch H; Postma J; Beato M
    Nucleic Acids Res; 1990 Dec; 18(23):6981-7. PubMed ID: 2175885
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Murlet: a practical multiple alignment tool for structural RNA sequences.
    Kiryu H; Tabei Y; Kin T; Asai K
    Bioinformatics; 2007 Jul; 23(13):1588-98. PubMed ID: 17459961
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simultaneous statistical multiple alignment and phylogeny reconstruction.
    Fleissner R; Metzler D; von Haeseler A
    Syst Biol; 2005 Aug; 54(4):548-61. PubMed ID: 16085574
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A search for common patterns in many sequences.
    Roytberg MA
    Comput Appl Biosci; 1992 Feb; 8(1):57-64. PubMed ID: 1568127
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A new greedy randomised adaptive search procedure for Multiple Sequence Alignment.
    Layeb A; Selmane M; Elhoucine MB
    Int J Bioinform Res Appl; 2013; 9(4):323-35. PubMed ID: 23797992
    [TBL] [Abstract][Full Text] [Related]  

  • 67. From fold predictions to function predictions: automation of functional site conservation analysis for functional genome predictions.
    Zhang B; Rychlewski L; Pawłowski K; Fetrow JS; Skolnick J; Godzik A
    Protein Sci; 1999 May; 8(5):1104-15. PubMed ID: 10338021
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Discovering metric temporal constraint networks on temporal databases.
    Álvarez MR; Félix P; Cariñena P
    Artif Intell Med; 2013 Jul; 58(3):139-54. PubMed ID: 23660232
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multiple sequence alignment using simulated annealing.
    Kim J; Pramanik S; Chung MJ
    Comput Appl Biosci; 1994 Jul; 10(4):419-26. PubMed ID: 7804875
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rapid assessment of extremal statistics for gapped local alignment.
    Olsen R; Bundschuh R; Hwa T
    Proc Int Conf Intell Syst Mol Biol; 1999; ():211-22. PubMed ID: 10786304
    [TBL] [Abstract][Full Text] [Related]  

  • 71. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.
    Mirarab S; Nguyen N; Guo S; Wang LS; Kim J; Warnow T
    J Comput Biol; 2015 May; 22(5):377-86. PubMed ID: 25549288
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Efficient composite pattern finding from monad patterns.
    Zhou J; Sander J; Lin G
    Int J Bioinform Res Appl; 2007; 3(1):86-99. PubMed ID: 18048174
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A min-cut algorithm for the consistency problem in multiple sequence alignment.
    Corel E; Pitschi F; Morgenstern B
    Bioinformatics; 2010 Apr; 26(8):1015-21. PubMed ID: 20189940
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Algorithms for hidden markov models restricted to occurrences of regular expressions.
    Tataru P; Sand A; Hobolth A; Mailund T; Pedersen CN
    Biology (Basel); 2013 Nov; 2(4):1282-95. PubMed ID: 24833225
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Average values of a dissimilarity measure not requiring sequence alignment are twice the averages of conventional mismatch counts requiring sequence alignment for a computer-generated model system.
    Blaisdell BE
    J Mol Evol; 1989 Dec; 29(6):538-47. PubMed ID: 2515300
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Stochastic heuristic algorithms for target motif identification (extended abstract).
    Wareham HT; Jiang T; Zhang X; Trendall CG
    Pac Symp Biocomput; 2000; ():392-403. PubMed ID: 10902187
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel optimal multi-pattern matching method with wildcards for DNA sequence.
    Wang X; Saif AAF; Liu D; Zhu Y; Benediktsson JA
    Technol Health Care; 2021; 29(S1):115-124. PubMed ID: 33682751
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Analysing humanly generated random number sequences: a pattern-based approach.
    Schulz MA; Schmalbach B; Brugger P; Witt K
    PLoS One; 2012; 7(7):e41531. PubMed ID: 22844490
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Discovering hidden time patterns in behavior: T-patterns and their detection.
    Magnusson MS
    Behav Res Methods Instrum Comput; 2000 Feb; 32(1):93-110. PubMed ID: 10758668
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Periodic pattern detection in sparse boolean sequences.
    Junier I; Hérisson J; Képès F
    Algorithms Mol Biol; 2010 Sep; 5():31. PubMed ID: 20831781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.