These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8996816)

  • 1. Sodium current amplitude increases dramatically in human retinal glial cells during diseases of the eye.
    Francke M; Pannicke T; Biedermann B; Faude F; Reichelt W
    Eur J Neurosci; 1996 Dec; 8(12):2662-70. PubMed ID: 8996816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane conductance of Müller glial cells in proliferative diabetic retinopathy.
    Bringmann A; Pannicke T; Uhlmann S; Kohen L; Wiedemann P; Reichenbach A
    Can J Ophthalmol; 2002 Jun; 37(4):221-7. PubMed ID: 12095095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye.
    Francke M; Pannicke T; Biedermann B; Faude F; Wiedemann P; Reichenbach A; Reichelt W
    Glia; 1997 Jul; 20(3):210-8. PubMed ID: 9215730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+ channels of Müller (glial) cells isolated from retinae of various mammalian species including man.
    Chao TI; Skachkov SN; Eberhardt W; Reichenbach A
    Glia; 1994 Mar; 10(3):173-85. PubMed ID: 8194860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between functional characteristics of healthy and pathological human retinal Müller glial cells.
    Reichelt W; Pannicke T; Biedermann B; Francke M; Faude F
    Surv Ophthalmol; 1997 Nov; 42 Suppl 1():S105-17. PubMed ID: 9603296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na(+) currents through Ca(2+) channels in human retinal glial (Müller) cells.
    Bringmann A; Biedermann B; Faude F; Enzmann V; Reichenbach A
    Curr Eye Res; 2000 May; 20(5):420-9. PubMed ID: 10855037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+ channels are expressed by mammalian retinal glial (Müller) cells.
    Chao TI; Pannicke T; Reichelt W; Reichenbach A
    Neuroreport; 1993 May; 4(5):575-8. PubMed ID: 8390309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age- and disease-related changes of calcium channel-mediated currents in human Müller glial cells.
    Bringmann A; Biedermann B; Schnurbusch U; Enzmann V; Faude F; Reichenbach A
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2791-6. PubMed ID: 10937599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells.
    Bringmann A; Schopf S; Reichenbach A
    J Neurophysiol; 2000 Dec; 84(6):2975-83. PubMed ID: 11110825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Na+ and Ca2+ currents in bag cells of sexually immature Aplysia californica.
    Fieber LA
    J Exp Biol; 1998 Mar; 201(Pt 5):745-54. PubMed ID: 9542153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Qualitative analysis of membrane currents in glial cells from normal and gliotic tissue in situ: down-regulation of Na+ current and lack of P2 purinergic responses.
    Jabs R; Paterson IA; Walz W
    Neuroscience; 1997 Dec; 81(3):847-60. PubMed ID: 9316033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological properties of sodium current subtypes in small cells from adult rat dorsal root ganglia.
    Rush AM; Bräu ME; Elliott AA; Elliott JR
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):771-89. PubMed ID: 9714859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion channels in spinal cord astrocytes in vitro. II. Biophysical and pharmacological analysis of two Na+ current types.
    Sontheimer H; Waxman SG
    J Neurophysiol; 1992 Oct; 68(4):1001-11. PubMed ID: 1331355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Müller (glial) cell in normal and diseased retina: a case for single-cell electrophysiology.
    Reichenbach A; Faude F; Enzmann V; Bringmann A; Pannicke T; Francke M; Biedermann B; Kuhrt H; Stolzenburg JU; Skatchkov SN; Heinemann U; Wiedemann P; Reichelt W
    Ophthalmic Res; 1997; 29(5):326-40. PubMed ID: 9323724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion channels in spinal cord astrocytes in vitro. I. Transient expression of high levels of Na+ and K+ channels.
    Sontheimer H; Black JA; Ransom BR; Waxman SG
    J Neurophysiol; 1992 Oct; 68(4):985-1000. PubMed ID: 1331358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage- and use-dependent inhibition of Na+ channels in rat sensory neurones by 4030W92, a new antihyperalgesic agent.
    Trezise DJ; John VH; Xie XM
    Br J Pharmacol; 1998 Jul; 124(5):953-63. PubMed ID: 9692781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium and calcium channels in bovine chromaffin cells.
    Fenwick EM; Marty A; Neher E
    J Physiol; 1982 Oct; 331():599-635. PubMed ID: 6296372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological characterization of Na+ currents in acutely isolated human hippocampal dentate granule cells.
    Reckziegel G; Beck H; Schramm J; Elger CE; Urban BW
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):139-50. PubMed ID: 9547388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological properties of human astrocytic tumor cells In situ: enigma of spiking glial cells.
    Bordey A; Sontheimer H
    J Neurophysiol; 1998 May; 79(5):2782-93. PubMed ID: 9582244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action potential-like responses in B104 cells with low Na+ channel densities.
    Gu XQ; Waxman SG
    Brain Res; 1996 Sep; 735(1):50-8. PubMed ID: 8905169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.