BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 8997183)

  • 1. Carbonic anhydrase and cardiac pH regulation.
    Vandenberg JI; Carter ND; Bethell HW; Nogradi A; Ridderstråle Y; Metcalfe JC; Grace AA
    Am J Physiol; 1996 Dec; 271(6 Pt 1):C1838-46. PubMed ID: 8997183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of pHi recovery after global ischemia in the perfused heart.
    Vandenberg JI; Metcalfe JC; Grace AA
    Circ Res; 1993 May; 72(5):993-1003. PubMed ID: 8386598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of intracellular pH in the perfused heart by external HCO3- and Na(+)-H+ exchange.
    Grace AA; Kirschenlohr HL; Metcalfe JC; Smith GA; Weissberg PL; Cragoe EJ; Vandenberg JI
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H289-98. PubMed ID: 8393626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular pH recovery during respiratory acidosis in perfused hearts.
    Vandenberg JI; Metcalfe JC; Grace AA
    Am J Physiol; 1994 Feb; 266(2 Pt 1):C489-97. PubMed ID: 8141263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylisopropylamiloride diminishes changes in intracellular Na, Ca and pH in ischemic newborn myocardium.
    Liu H; Cala PM; Anderson SE
    J Mol Cell Cardiol; 1997 Aug; 29(8):2077-86. PubMed ID: 9281440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes.
    Nakhoul NL; Davis BA; Romero MF; Boron WF
    Am J Physiol; 1998 Feb; 274(2):C543-8. PubMed ID: 9486145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts.
    Kitakaze M; Weisfeldt ML; Marban E
    J Clin Invest; 1988 Sep; 82(3):920-7. PubMed ID: 3417873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of pHi recovery from NH4Cl-induced acidosis in anoxic isolated turtle heart: a 31P-NMR study.
    Shi H; Hamm PH; Meyers RS; Lawler RG; Jackson DC
    Am J Physiol; 1997 Jan; 272(1 Pt 2):R6-15. PubMed ID: 9038985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A physiological measure of carbonic anhydrase in Müller cells.
    Newman EA
    Glia; 1994 Aug; 11(4):291-9. PubMed ID: 7960033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin II stimulates sodium-dependent proton extrusion in perfused ferret heart.
    Grace AA; Metcalfe JC; Weissberg PL; Bethell HW; Vandenberg JI
    Am J Physiol; 1996 Jun; 270(6 Pt 1):C1687-94. PubMed ID: 8764151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)-H+ exchange inhibition at reperfusion is cardioprotective during myocardial ischemia-reperfusion; 31P NMR studies.
    Docherty JC; Yang L; Pierce GN; Deslauriers R
    Mol Cell Biochem; 1997 Nov; 176(1-2):257-64. PubMed ID: 9406170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotid body chemoreception: the importance of CO2-HCO3- and carbonic anhydrase. (review).
    Iturriaga R
    Biol Res; 1993; 26(3):319-29. PubMed ID: 7606251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous measurement of intracellular and extracellular carbonic anhydrase activity in intact muscle fibres.
    Saarikoski J; Kaila K
    Pflugers Arch; 1992 Jul; 421(4):357-63. PubMed ID: 1408660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Na-K-2Cl cotransport inhibition on myocardial Na and Ca during ischemia and reperfusion.
    Anderson SE; Dickinson CZ; Liu H; Cala PM
    Am J Physiol; 1996 Feb; 270(2 Pt 1):C608-18. PubMed ID: 8779926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes.
    Musa-Aziz R; Occhipinti R; Boron WF
    Am J Physiol Cell Physiol; 2014 Nov; 307(9):C791-813. PubMed ID: 24965587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa.
    Mizumori M; Meyerowitz J; Takeuchi T; Lim S; Lee P; Supuran CT; Guth PH; Engel E; Kaunitz JD; Akiba Y
    J Physiol; 2006 Jun; 573(Pt 3):827-42. PubMed ID: 16556652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial carbonic anhydrase is involved in rat renal glucose synthesis.
    Dodgson SJ; Cherian K
    Am J Physiol; 1989 Dec; 257(6 Pt 1):E791-6. PubMed ID: 2514597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The catalytic properties of murine carbonic anhydrase VII.
    Earnhardt JN; Qian M; Tu C; Lakkis MM; Bergenhem NC; Laipis PJ; Tashian RE; Silverman DN
    Biochemistry; 1998 Jul; 37(30):10837-45. PubMed ID: 9692974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extramitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics.
    Schroeder MA; Ali MA; Hulikova A; Supuran CT; Clarke K; Vaughan-Jones RD; Tyler DJ; Swietach P
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):E958-67. PubMed ID: 23431149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study.
    Schroeder MA; Swietach P; Atherton HJ; Gallagher FA; Lee P; Radda GK; Clarke K; Tyler DJ
    Cardiovasc Res; 2010 Apr; 86(1):82-91. PubMed ID: 20008827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.