BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 8997373)

  • 1. GABA release in posterior hypothalamus across sleep-wake cycle.
    Nitz D; Siegel JM
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1707-12. PubMed ID: 8997373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats.
    Lin JS; Sakai K; Vanni-Mercier G; Jouvet M
    Brain Res; 1989 Feb; 479(2):225-40. PubMed ID: 2924157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA release in the dorsal raphe nucleus: role in the control of REM sleep.
    Nitz D; Siegel J
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R451-5. PubMed ID: 9249585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA release in the locus coeruleus as a function of sleep/wake state.
    Nitz D; Siegel JM
    Neuroscience; 1997 Jun; 78(3):795-801. PubMed ID: 9153658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caffeine promotes glutamate and histamine release in the posterior hypothalamus.
    John J; Kodama T; Siegel JM
    Am J Physiol Regul Integr Comp Physiol; 2014 Sep; 307(6):R704-10. PubMed ID: 25031227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of dorsal raphe neurons in paradoxical sleep generation in the cat: no evidence for a serotonergic mechanism.
    Sakai K; Crochet S
    Eur J Neurosci; 2001 Jan; 13(1):103-12. PubMed ID: 11135008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waking selective neurons in the posterior hypothalamus and their response to histamine H3-receptor ligands: an electrophysiological study in freely moving cats.
    Vanni-Mercier G; Gigout S; Debilly G; Lin JS
    Behav Brain Res; 2003 Sep; 144(1-2):227-41. PubMed ID: 12946612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.
    Sakai K
    Neuroscience; 2014 Feb; 260():249-64. PubMed ID: 24355494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A GABAergic pontine reticular system is involved in the control of wakefulness and sleep.
    Xi MC; Morales FR; Chase MH
    Sleep Res Online; 1999; 2(2):43-8. PubMed ID: 11382881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-dependent changes in glutamate, glycine, GABA, and dopamine levels in cat lumbar spinal cord.
    Taepavarapruk N; Taepavarapruk P; John J; Lai YY; Siegel JM; Phillips AG; McErlane SA; Soja PJ
    J Neurophysiol; 2008 Aug; 100(2):598-608. PubMed ID: 18353913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade.
    Ferraro L; Antonelli T; Tanganelli S; O'Connor WT; Perez de la Mora M; Mendez-Franco J; Rambert FA; Fuxe K
    Neuropsychopharmacology; 1999 Apr; 20(4):346-56. PubMed ID: 10088135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat.
    Sallanon M; Denoyer M; Kitahama K; Aubert C; Gay N; Jouvet M
    Neuroscience; 1989; 32(3):669-83. PubMed ID: 2601839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAergic mechanisms in the pedunculopontine tegmental nucleus of the cat promote active (REM) sleep.
    Torterolo P; Morales FR; Chase MH
    Brain Res; 2002 Jul; 944(1-2):1-9. PubMed ID: 12106660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness.
    Vanini G; Baghdoyan HA
    Sleep; 2013 Mar; 36(3):337-43. PubMed ID: 23450652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAA receptors inhibit acetylcholine release in cat pontine reticular formation: implications for REM sleep regulation.
    Vazquez J; Baghdoyan HA
    J Neurophysiol; 2004 Oct; 92(4):2198-206. PubMed ID: 15212422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of wakefulness and inhibition of active (REM) sleep by GABAergic processes in the nucleus pontis oralis.
    Xi MC; Morales FR; Chase MH
    Arch Ital Biol; 2001 Feb; 139(1-2):125-45. PubMed ID: 11256181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA in pedunculopontine tegmentum increases rapid eye movement sleep in freely moving rats: possible role of GABA-ergic inputs from substantia nigra pars reticulata.
    Pal D; Mallick BN
    Neuroscience; 2009 Dec; 164(2):404-14. PubMed ID: 19698764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats.
    John J; Ramanathan L; Siegel JM
    Am J Physiol Regul Integr Comp Physiol; 2008 Dec; 295(6):R2041-9. PubMed ID: 18815208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle.
    Lee RS; Steffensen SC; Henriksen SJ
    J Neurosci; 2001 Mar; 21(5):1757-66. PubMed ID: 11222665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of the Ventral Pallidum by GABA
    Zhang X; Liu Y; Yang B; Xu H
    Neurochem Res; 2020 Aug; 45(8):1791-1801. PubMed ID: 32367385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.