BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8997390)

  • 1. Differential regulation of renal regional blood flow by endothelin-1.
    Gurbanov K; Rubinstein I; Hoffman A; Abassi Z; Better OS; Winaver J
    Am J Physiol; 1996 Dec; 271(6 Pt 2):F1166-72. PubMed ID: 8997390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effect of endothelin-1 on renal regional blood flow: role of nitric oxide.
    Rubinstein I; Gurbanov K; Hoffman A; Better OS; Winaver J
    J Cardiovasc Pharmacol; 1995; 26 Suppl 3():S208-10. PubMed ID: 8587364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of NO and cytochrome P-450-derived eicosanoids in ET-1-induced changes in intrarenal hemodynamics in rats.
    Hercule HC; Oyekan AO
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2132-41. PubMed ID: 11080078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of intrarenal blood flow in experimental heart failure: role of endothelin and nitric oxide.
    Abassi Z; Gurbanov K; Rubinstein I; Better OS; Hoffman A; Winaver J
    Am J Physiol; 1998 Apr; 274(4):F766-74. PubMed ID: 9575902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of U46619 on renal regional hemodynamics in the rat: involvement of endothelin.
    Hantz H; Adesuyi A; Adebayo O
    J Pharmacol Exp Ther; 2001 Oct; 299(1):372-6. PubMed ID: 11561101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ET(A) - and ET(B)-receptor antagonists on regional kidney blood flow, and responses to intravenous endothelin-1, in anaesthetized rabbits.
    Evans RG; Madden AC; Oliver JJ; Lewis TV
    J Hypertens; 2001 Oct; 19(10):1789-99. PubMed ID: 11593099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. alpha(2)-adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction.
    Zou AP; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R769-77. PubMed ID: 10956233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI; GarcĂ­a-Salom M; Tornel J; de Gasparo M; Fenoy FJ
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin-like action of Pausinystalia yohimbe aqueous extract on vascular and renal regional hemodynamics in Sprague Dawley rats.
    Ajayi AA; Newaz M; Hercule H; Saleh M; Bode CO; Oyekan AO
    Methods Find Exp Clin Pharmacol; 2003 Dec; 25(10):817-22. PubMed ID: 14735230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration in endothelin receptor sub-type responsiveness and in the endothelin-TXA(2) mimetic U46619 interaction, in type-2 hypertensive diabetic Zucker rats.
    Ajayi AA; Ogungbade GO; Hercule HC; Oyekan AO; Mutembei L
    Diabetes Res Clin Pract; 2004 Mar; 63(3):155-69. PubMed ID: 14757287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II and renal medullary blood flow in Lyon rats.
    Sarkis A; Liu KL; Lo M; Benzoni D
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F365-72. PubMed ID: 12529274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats.
    Grzelec-Mojzesowicz M; Sadowski J
    J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional role of ETB receptors in the renal medulla.
    Vassileva I; Mountain C; Pollock DM
    Hypertension; 2003 Jun; 41(6):1359-63. PubMed ID: 12719443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal vascular effects of the selective endothelin receptor antagonists in anaesthetized rats.
    Matsuura T; Miura K; Ebara T; Yukimura T; Yamanaka S; Kim S; Iwao H
    Br J Pharmacol; 1997 Sep; 122(1):81-6. PubMed ID: 9298531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II and nitric oxide in neural control of intrarenal blood flow.
    Rajapakse NW; Sampson AK; Eppel GA; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R745-54. PubMed ID: 15890788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ET-receptor subtypes: roles in regional renal vascular actions of exogenous and endogenous endothelins in anesthetized rabbits.
    Evans RG; Madden AC; Cotterill E
    J Cardiovasc Pharmacol; 2000 May; 35(5):677-85. PubMed ID: 10813367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of 20-hydroxyeicosatetraenoic acid on intrarenal blood flow in the rat.
    Oyekan AO
    J Pharmacol Exp Ther; 2005 Jun; 313(3):1289-95. PubMed ID: 15769866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of A-192621.1, a specific endothelin-B antagonist, on intrarenal hemodynamic responses to endothelin-1.
    Brodsky S; Abassi Z; Wessale J; Ramadan R; Winaver J; Hoffman A
    J Cardiovasc Pharmacol; 2000 Nov; 36(5 Suppl 1):S311-3. PubMed ID: 11078406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.