These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 8997705)
1. Discrimination between Bacillus cereus and Bacillus thuringiensis using specific DNA probes based on variable regions of 16S rRNA. te Giffel MC; Beumer RR; Klijn N; Wagendorp A; Rombouts FM FEMS Microbiol Lett; 1997 Jan; 146(1):47-51. PubMed ID: 8997705 [TBL] [Abstract][Full Text] [Related]
2. Discrimination of Bacillus cereus and Bacillus thuringiensis with 16S rRNA and gyrB gene based PCR primers and sequencing of their annealing sites. Chen ML; Tsen HY J Appl Microbiol; 2002; 92(5):912-9. PubMed ID: 11972696 [TBL] [Abstract][Full Text] [Related]
3. Development of a high-resolution melting-based approach for efficient differentiation among Bacillus cereus group isolates. Antolinos V; Fernández PS; Ros-Chumillas M; Periago PM; Weiss J Foodborne Pathog Dis; 2012 Sep; 9(9):777-85. PubMed ID: 22881064 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. Bourque SN; Valero JR; Lavoie MC; Levesque RC Appl Environ Microbiol; 1995 Apr; 61(4):1623-6. PubMed ID: 7538281 [TBL] [Abstract][Full Text] [Related]
5. Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. Bavykin SG; Lysov YP; Zakhariev V; Kelly JJ; Jackman J; Stahl DA; Cherni A J Clin Microbiol; 2004 Aug; 42(8):3711-30. PubMed ID: 15297521 [TBL] [Abstract][Full Text] [Related]
6. Strategy for identification of Bacillus cereus and Bacillus thuringiensis strains closely related to Bacillus anthracis. Daffonchio D; Raddadi N; Merabishvili M; Cherif A; Carmagnola L; Brusetti L; Rizzi A; Chanishvili N; Visca P; Sharp R; Borin S Appl Environ Microbiol; 2006 Feb; 72(2):1295-301. PubMed ID: 16461679 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent Amplified Fragment Length Polymorphism Analysis of Norwegian Bacillus cereus and Bacillus thuringiensis Soil Isolates. Ticknor LO; Kolstø AB; Hill KK; Keim P; Laker MT; Tonks M; Jackson PJ Appl Environ Microbiol; 2001 Oct; 67(10):4863-73. PubMed ID: 11571195 [TBL] [Abstract][Full Text] [Related]
8. Detection of Bacillus thuringiensis kurstaki HD1 on cabbage for human consumption. Hendriksen NB; Hansen BM FEMS Microbiol Lett; 2006 Apr; 257(1):106-11. PubMed ID: 16553839 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of Bacillus cereus-like bacteria from faecal samples from greenhouse workers who are using Bacillus thuringiensis-based insecticides. Jensen GB; Larsen P; Jacobsen BL; Madsen B; Wilcks A; Smidt L; Andrup L Int Arch Occup Environ Health; 2002 Mar; 75(3):191-6. PubMed ID: 11954987 [TBL] [Abstract][Full Text] [Related]
10. Molecular methods to evaluate biodiversity in Bacillus cereus and Bacillus thuringiensis strains from different origins. Manzano M; Giusto C; Iacumin L; Cantoni C; Comi G Food Microbiol; 2009 May; 26(3):259-64. PubMed ID: 19269566 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of phenotypic and PCR-based approaches for routine analysis of Bacillus cereus group foodborne isolates. Martínez-Blanch JF; Sánchez G; Garay E; Aznar R Antonie Van Leeuwenhoek; 2011 Mar; 99(3):697-709. PubMed ID: 21191654 [TBL] [Abstract][Full Text] [Related]
12. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Chelliah R; Wei S; Park BJ; Kim SH; Park DS; Kim SH; Hwan KS; Oh DH Microb Pathog; 2017 Oct; 111():22-27. PubMed ID: 28778821 [TBL] [Abstract][Full Text] [Related]
13. Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the "Bacillus cereus group". Daffonchio D; Cherif A; Borin S Appl Environ Microbiol; 2000 Dec; 66(12):5460-8. PubMed ID: 11097928 [TBL] [Abstract][Full Text] [Related]
14. Occurrence of psychrotolerant Bacillus cereus group strains in ice creams. Zhou G; Zheng D; Dou L; Cai Q; Yuan Z Int J Food Microbiol; 2010 Feb; 137(2-3):143-6. PubMed ID: 20036024 [TBL] [Abstract][Full Text] [Related]
15. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Hansen BM; Hendriksen NB Appl Environ Microbiol; 2001 Jan; 67(1):185-9. PubMed ID: 11133444 [TBL] [Abstract][Full Text] [Related]
16. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Yamada S; Ohashi E; Agata N; Venkateswaran K Appl Environ Microbiol; 1999 Apr; 65(4):1483-90. PubMed ID: 10103241 [TBL] [Abstract][Full Text] [Related]
17. Molecular and toxigenic characterization of Bacillus cereus and Bacillus thuringiensis strains isolated from commercial ground roasted coffee. Chaves JQ; Cavados Cde F; Vivoni AM J Food Prot; 2012 Mar; 75(3):518-22. PubMed ID: 22410226 [TBL] [Abstract][Full Text] [Related]
18. Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Brousseau R; Saint-Onge A; Préfontaine G; Masson L; Cabana J Appl Environ Microbiol; 1993 Jan; 59(1):114-9. PubMed ID: 8439143 [TBL] [Abstract][Full Text] [Related]
19. Sequence diversity of the Bacillus thuringiensis and B. cereus sensu lato flagellin (H antigen) protein: comparison with H serotype diversity. Xu D; Côté JC Appl Environ Microbiol; 2006 Jul; 72(7):4653-62. PubMed ID: 16820457 [TBL] [Abstract][Full Text] [Related]
20. Detection of enterotoxic Bacillus cereus producing hemolytic and non hemolytic enterotoxins by PCR test. Ołtuszak-Walczak E; Walczak P; Modrak R Pol J Microbiol; 2006; 55(2):113-8. PubMed ID: 17419288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]