These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 8998946)
1. DNA-protein cross-links (DPX) and cell proliferation in B6C3F1 mice but not Syrian golden hamsters exposed to dichloromethane: pharmacokinetics and risk assessment with DPX as dosimeter. Casanova M; Conolly RB; Heck H d'A Fundam Appl Toxicol; 1996 May; 31(1):103-16. PubMed ID: 8998946 [TBL] [Abstract][Full Text] [Related]
2. Dichloromethane (methylene chloride): metabolism to formaldehyde and formation of DNA-protein cross-links in B6C3F1 mice and Syrian golden hamsters. Casanova M; Deyo DF; Heck H Toxicol Appl Pharmacol; 1992 May; 114(1):162-5. PubMed ID: 1585369 [TBL] [Abstract][Full Text] [Related]
3. Dichloromethane metabolism to formaldehyde and reaction of formaldehyde with nucleic acids in hepatocytes of rodents and humans with and without glutathione S-transferase T1 and M1 genes. Casanova M; Bell DA; Heck HD Fundam Appl Toxicol; 1997 Jun; 37(2):168-80. PubMed ID: 9242590 [TBL] [Abstract][Full Text] [Related]
4. Effects of glutathione transferase theta polymorphism on the risk estimates of dichloromethane to humans. El-Masri HA; Bell DA; Portier CJ Toxicol Appl Pharmacol; 1999 Aug; 158(3):221-30. PubMed ID: 10438655 [TBL] [Abstract][Full Text] [Related]
5. DNA-protein cross-links and cell replication at specific sites in the nose of F344 rats exposed subchronically to formaldehyde. Casanova M; Morgan KT; Gross EA; Moss OR; Heck HA Fundam Appl Toxicol; 1994 Nov; 23(4):525-36. PubMed ID: 7867904 [TBL] [Abstract][Full Text] [Related]
6. In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models. Reitz RH; Mendrala AL; Guengerich FP Toxicol Appl Pharmacol; 1989 Feb; 97(2):230-46. PubMed ID: 2922756 [TBL] [Abstract][Full Text] [Related]
7. Pharmacodynamics of formaldehyde: applications of a model for the arrest of DNA replication by DNA-protein cross-links. Heck H; Casanova M Toxicol Appl Pharmacol; 1999 Oct; 160(1):86-100. PubMed ID: 10502505 [TBL] [Abstract][Full Text] [Related]
8. The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity. Heck Hd; Casanova M Regul Toxicol Pharmacol; 2004 Oct; 40(2):92-106. PubMed ID: 15450713 [TBL] [Abstract][Full Text] [Related]
9. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice. Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684 [TBL] [Abstract][Full Text] [Related]
10. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Andersen ME; Clewell HJ; Gargas ML; Smith FA; Reitz RH Toxicol Appl Pharmacol; 1987 Feb; 87(2):185-205. PubMed ID: 3824380 [TBL] [Abstract][Full Text] [Related]
11. Effect of methylene chloride inhalation on replicative DNA synthesis in the lungs of female B6C3F1 mice. Kanno J; Foley JF; Kari F; Anderson MW; Maronpot RR Environ Health Perspect; 1993 Dec; 101 Suppl 5(Suppl 5):271-6. PubMed ID: 8013420 [TBL] [Abstract][Full Text] [Related]
12. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results. Marino DJ; Starr TB Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874 [TBL] [Abstract][Full Text] [Related]
13. A 90-day chloroform inhalation study in female and male B6C3F1 mice: implications for cancer risk assessment. Larson JL; Templin MV; Wolf DC; Jamison KC; Leininger JR; Méry S; Morgan KT; Wong BA; Conolly RB; Butterworth BE Fundam Appl Toxicol; 1996 Mar; 30(1):118-37. PubMed ID: 8812250 [TBL] [Abstract][Full Text] [Related]
14. Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans. Andersen ME; Clewell HJ; Gargas ML; MacNaughton MG; Reitz RH; Nolan RJ; McKenna MJ Toxicol Appl Pharmacol; 1991 Mar; 108(1):14-27. PubMed ID: 1900959 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice. Evans MV; Caldwell JC Toxicol Appl Pharmacol; 2010 May; 244(3):280-90. PubMed ID: 20153349 [TBL] [Abstract][Full Text] [Related]
16. Induction of DNA-protein crosslinks by dichloromethane in a V79 cell line transfected with the murine glutathione-S-transferase theta 1 gene. Hu Y; Kabler SL; Tennant AH; Townsend AJ; Kligerman AD Mutat Res; 2006 Sep; 607(2):231-9. PubMed ID: 16765633 [TBL] [Abstract][Full Text] [Related]
17. Combining transcriptomics and PBPK modeling indicates a primary role of hypoxia and altered circadian signaling in dichloromethane carcinogenicity in mouse lung and liver. Andersen ME; Black MB; Campbell JL; Pendse SN; Clewell HJ; Pottenger LH; Bus JS; Dodd DE; Kemp DC; McMullen PD Toxicol Appl Pharmacol; 2017 Oct; 332():149-158. PubMed ID: 28392392 [TBL] [Abstract][Full Text] [Related]
18. Lack of evidence for the involvement of formaldehyde in the hepatocarcinogenicity of methyl tertiary-butyl ether in CD-1 mice. Casanova M; Heck HA Chem Biol Interact; 1997 Jul; 105(2):131-43. PubMed ID: 9251725 [TBL] [Abstract][Full Text] [Related]
19. A Bayesian analysis of the influence of GSTT1 polymorphism on the cancer risk estimate for dichloromethane. Jonsson F; Johanson G Toxicol Appl Pharmacol; 2001 Jul; 174(2):99-112. PubMed ID: 11446825 [TBL] [Abstract][Full Text] [Related]
20. The impact of exercise and intersubject variability on dose estimates for dichloromethane derived from a physiologically based pharmacokinetic model. Dankovic DA; Bailer AJ Fundam Appl Toxicol; 1994 Jan; 22(1):20-5. PubMed ID: 8125209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]