BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8998950)

  • 1. Incorporating Monte Carlo simulation into physiologically based pharmacokinetic models using advanced continuous simulation language (ACSL): a computational method.
    Thomas RS; Lytle WE; Keefe TJ; Constan AA; Yang RS
    Fundam Appl Toxicol; 1996 May; 31(1):19-28. PubMed ID: 8998950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis.
    Cox LA
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1413-29. PubMed ID: 9118928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in conjunction with physiologically-based pharmacokinetic modeling.
    Cronin WJ; Oswald EJ; Shelley ML; Fisher JW; Flemming CD
    Risk Anal; 1995 Oct; 15(5):555-65. PubMed ID: 7501875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and parameterization of pharmacokinetic models: their impact on model predictions.
    Woodruff TJ; Bois FY; Auslander D; Spear RC
    Risk Anal; 1992 Jun; 12(2):189-201. PubMed ID: 1502372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Population Physiologically-Based Pharmacokinetic (PBPK) Approach for a Physiologically Realistic Characterization of Interindividual Variability in Clinically Relevant Populations.
    Krauss M; Tappe K; Schuppert A; Kuepfer L; Goerlitz L
    PLoS One; 2015; 10(10):e0139423. PubMed ID: 26431198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologically-based pharmacokinetic modeling of benzene in humans: a Bayesian approach.
    Yokley K; Tran HT; Pekari K; Rappaport S; Riihimaki V; Rothman N; Waidyanatha S; Schlosser PM
    Risk Anal; 2006 Aug; 26(4):925-43. PubMed ID: 16948686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a human physiologically based pharmacokinetic (PBPK) model for phthalate (DEHP) and its metabolites: A bottom up modeling approach.
    Sharma RP; Schuhmacher M; Kumar V
    Toxicol Lett; 2018 Oct; 296():152-162. PubMed ID: 29958929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a probability-bounds approach.
    Nong A; Krishnan K
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):93-101. PubMed ID: 17367907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainty, variability, and sensitivity analysis in physiological pharmacokinetic models.
    Krewski D; Wang Y; Bartlett S; Krishnan K
    J Biopharm Stat; 1995 Nov; 5(3):245-71. PubMed ID: 8580927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing drug distribution in tissues expressing P-glycoprotein using physiologically based pharmacokinetic modeling: identification of important model parameters through global sensitivity analysis.
    Fenneteau F; Li J; Nekka F
    J Pharmacokinet Pharmacodyn; 2009 Dec; 36(6):495-522. PubMed ID: 19847628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data.
    Wendling T; Tsamandouras N; Dumitras S; Pigeolet E; Ogungbenro K; Aarons L
    AAPS J; 2016 Jan; 18(1):196-209. PubMed ID: 26538125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling benzene pharmacokinetics across three sets of animal data: parametric sensitivity and risk implications.
    Spear RC; Bois FY; Woodruff T; Auslander D; Parker J; Selvin S
    Risk Anal; 1991 Dec; 11(4):641-54. PubMed ID: 1780503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age.
    Allen BC; Hack CE; Clewell HJ
    Risk Anal; 2007 Aug; 27(4):947-59. PubMed ID: 17958503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fuzzy physiologically based pharmacokinetic modeling framework to predict drug disposition in humans.
    Seng KY; Vicini P; Nestorov IA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5037-40. PubMed ID: 17947127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability of physiologically based pharmacokinetic (PBPK) model parameters and their effects on PBPK model predictions in a risk assessment for perchloroethylene (PCE).
    Gearhart JM; Mahle DA; Greene RJ; Seckel CS; Flemming CD; Fisher JW; Clewell HJ
    Toxicol Lett; 1993 May; 68(1-2):131-44. PubMed ID: 8516760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology for solving physiologically based pharmacokinetic models without the use of simulation softwares.
    Haddad S; Pelekis M; Krishnan K
    Toxicol Lett; 1996 May; 85(2):113-26. PubMed ID: 8650694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates.
    Fenneteau F; Poulin P; Nekka F
    J Pharm Sci; 2010 Jan; 99(1):486-514. PubMed ID: 19479982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of glutathione transferase theta polymorphism on the risk estimates of dichloromethane to humans.
    El-Masri HA; Bell DA; Portier CJ
    Toxicol Appl Pharmacol; 1999 Aug; 158(3):221-30. PubMed ID: 10438655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the reliability of PBPK models using data from methyl chloride-exposed, non-conjugating human subjects.
    Jonsson F; Bois FY; Johanson G
    Arch Toxicol; 2001 Jun; 75(4):189-99. PubMed ID: 11482516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation.
    Thomas RS; Bigelow PL; Keefe TJ; Yang RS
    Am Ind Hyg Assoc J; 1996 Jan; 57(1):23-32. PubMed ID: 8588550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.