These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 8998950)
1. Incorporating Monte Carlo simulation into physiologically based pharmacokinetic models using advanced continuous simulation language (ACSL): a computational method. Thomas RS; Lytle WE; Keefe TJ; Constan AA; Yang RS Fundam Appl Toxicol; 1996 May; 31(1):19-28. PubMed ID: 8998950 [TBL] [Abstract][Full Text] [Related]
2. Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis. Cox LA Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1413-29. PubMed ID: 9118928 [TBL] [Abstract][Full Text] [Related]
3. A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in conjunction with physiologically-based pharmacokinetic modeling. Cronin WJ; Oswald EJ; Shelley ML; Fisher JW; Flemming CD Risk Anal; 1995 Oct; 15(5):555-65. PubMed ID: 7501875 [TBL] [Abstract][Full Text] [Related]
4. Structure and parameterization of pharmacokinetic models: their impact on model predictions. Woodruff TJ; Bois FY; Auslander D; Spear RC Risk Anal; 1992 Jun; 12(2):189-201. PubMed ID: 1502372 [TBL] [Abstract][Full Text] [Related]
5. Bayesian Population Physiologically-Based Pharmacokinetic (PBPK) Approach for a Physiologically Realistic Characterization of Interindividual Variability in Clinically Relevant Populations. Krauss M; Tappe K; Schuppert A; Kuepfer L; Goerlitz L PLoS One; 2015; 10(10):e0139423. PubMed ID: 26431198 [TBL] [Abstract][Full Text] [Related]
7. Development of a human physiologically based pharmacokinetic (PBPK) model for phthalate (DEHP) and its metabolites: A bottom up modeling approach. Sharma RP; Schuhmacher M; Kumar V Toxicol Lett; 2018 Oct; 296():152-162. PubMed ID: 29958929 [TBL] [Abstract][Full Text] [Related]
8. Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a probability-bounds approach. Nong A; Krishnan K Regul Toxicol Pharmacol; 2007 Jun; 48(1):93-101. PubMed ID: 17367907 [TBL] [Abstract][Full Text] [Related]
9. Uncertainty, variability, and sensitivity analysis in physiological pharmacokinetic models. Krewski D; Wang Y; Bartlett S; Krishnan K J Biopharm Stat; 1995 Nov; 5(3):245-71. PubMed ID: 8580927 [TBL] [Abstract][Full Text] [Related]
10. Assessing drug distribution in tissues expressing P-glycoprotein using physiologically based pharmacokinetic modeling: identification of important model parameters through global sensitivity analysis. Fenneteau F; Li J; Nekka F J Pharmacokinet Pharmacodyn; 2009 Dec; 36(6):495-522. PubMed ID: 19847628 [TBL] [Abstract][Full Text] [Related]
11. Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data. Wendling T; Tsamandouras N; Dumitras S; Pigeolet E; Ogungbenro K; Aarons L AAPS J; 2016 Jan; 18(1):196-209. PubMed ID: 26538125 [TBL] [Abstract][Full Text] [Related]
12. Modeling benzene pharmacokinetics across three sets of animal data: parametric sensitivity and risk implications. Spear RC; Bois FY; Woodruff T; Auslander D; Parker J; Selvin S Risk Anal; 1991 Dec; 11(4):641-54. PubMed ID: 1780503 [TBL] [Abstract][Full Text] [Related]
13. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age. Allen BC; Hack CE; Clewell HJ Risk Anal; 2007 Aug; 27(4):947-59. PubMed ID: 17958503 [TBL] [Abstract][Full Text] [Related]
14. A fuzzy physiologically based pharmacokinetic modeling framework to predict drug disposition in humans. Seng KY; Vicini P; Nestorov IA Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5037-40. PubMed ID: 17947127 [TBL] [Abstract][Full Text] [Related]
15. Variability of physiologically based pharmacokinetic (PBPK) model parameters and their effects on PBPK model predictions in a risk assessment for perchloroethylene (PCE). Gearhart JM; Mahle DA; Greene RJ; Seckel CS; Flemming CD; Fisher JW; Clewell HJ Toxicol Lett; 1993 May; 68(1-2):131-44. PubMed ID: 8516760 [TBL] [Abstract][Full Text] [Related]
16. A methodology for solving physiologically based pharmacokinetic models without the use of simulation softwares. Haddad S; Pelekis M; Krishnan K Toxicol Lett; 1996 May; 85(2):113-26. PubMed ID: 8650694 [TBL] [Abstract][Full Text] [Related]
17. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates. Fenneteau F; Poulin P; Nekka F J Pharm Sci; 2010 Jan; 99(1):486-514. PubMed ID: 19479982 [TBL] [Abstract][Full Text] [Related]
18. Effects of glutathione transferase theta polymorphism on the risk estimates of dichloromethane to humans. El-Masri HA; Bell DA; Portier CJ Toxicol Appl Pharmacol; 1999 Aug; 158(3):221-30. PubMed ID: 10438655 [TBL] [Abstract][Full Text] [Related]
19. Assessing the reliability of PBPK models using data from methyl chloride-exposed, non-conjugating human subjects. Jonsson F; Bois FY; Johanson G Arch Toxicol; 2001 Jun; 75(4):189-99. PubMed ID: 11482516 [TBL] [Abstract][Full Text] [Related]
20. Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. Thomas RS; Bigelow PL; Keefe TJ; Yang RS Am Ind Hyg Assoc J; 1996 Jan; 57(1):23-32. PubMed ID: 8588550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]