These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8998955)

  • 41. Neural and pharmacological basis for nasal irritation.
    Silver WL
    Ann N Y Acad Sci; 1992 Apr; 641():152-63. PubMed ID: 1580465
    [No Abstract]   [Full Text] [Related]  

  • 42. Estimating sensory irritation potency of volatile organic chemicals using QSARs based on decision tree methods for regulatory purpose.
    Gupta S; Basant N; Singh KP
    Ecotoxicology; 2015 May; 24(4):873-86. PubMed ID: 25707485
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensory irritation. Relation to indoor air pollution.
    Cometto-Muñiz JE; Cain WS
    Ann N Y Acad Sci; 1992 Apr; 641():137-51. PubMed ID: 1580464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Draize rabbit eye test compatibility with eye irritation thresholds in humans: a quantitative structure-activity relationship analysis.
    Abraham MH; Hassanisadi M; Jalali-Heravi M; Ghafourian T; Cain WS; Cometto-Muniz JE
    Toxicol Sci; 2003 Dec; 76(2):384-91. PubMed ID: 14514959
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Odor annoyance of environmental chemicals: sensory and cognitive influences.
    van Thriel C; Kiesswetter E; Schäper M; Juran SA; Blaszkewicz M; Kleinbeck S
    J Toxicol Environ Health A; 2008; 71(11-12):776-85. PubMed ID: 18569576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of single and mixed VOCs by smell and by sensory irritation.
    Cometto-Muñiz JE; Cain WS; Abraham MH
    Indoor Air; 2004; 14 Suppl 8():108-17. PubMed ID: 15663466
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temporal integration of nasal irritation from ammonia at threshold and supra-threshold levels.
    Wise PM; Canty TM; Wysocki CJ
    Toxicol Sci; 2005 Sep; 87(1):223-31. PubMed ID: 15976196
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using the theoretical linear energy solvation energy relationship to correlate and predict nasal pungency thresholds.
    Famini GR; Aguiar D; Payne MA; Rodriquez R; Wilson LY
    J Mol Graph Model; 2002 Jan; 20(4):277-80. PubMed ID: 11858636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensory irritation mechanisms investigated from model compounds: trifluoroethanol, hexafluoroisopropanol and methyl hexafluoroisopropyl ether.
    Nielsen GD; Abraham MH; Hansen LF; Hammer M; Cooksey CJ; Andonian-Haftvan J; Alarie Y
    Arch Toxicol; 1996; 70(6):319-28. PubMed ID: 8975630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trigeminal sensitivity to contact chemical stimulation: a new method and some results.
    Prah JD; Benignus VA
    Percept Psychophys; 1984 Jan; 35(1):65-8. PubMed ID: 6709476
    [No Abstract]   [Full Text] [Related]  

  • 51. The effect of menthol vapor on nasal sensitivity to chemical irritation.
    Wise PM; Preti G; Eades J; Wysocki CJ
    Nicotine Tob Res; 2011 Oct; 13(10):989-97. PubMed ID: 21652736
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of eye irritation from organic chemicals using membrane-interaction QSAR analysis.
    Kulkarni A; Hopfinger AJ; Osborne R; Bruner LH; Thompson ED
    Toxicol Sci; 2001 Feb; 59(2):335-45. PubMed ID: 11158727
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of skin irritation from organic chemicals using membrane-interaction QSAR analysis.
    Kodithala K; Hopfinger AJ; Thompson ED; Robinson MK
    Toxicol Sci; 2002 Apr; 66(2):336-46. PubMed ID: 11896301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chronobiology of nasal chemosensitivity: do odor or trigeminal pain thresholds follow a circadian rhythm?
    Lötsch J; Nordin S; Hummel T; Murphy C; Kobal G
    Chem Senses; 1997 Oct; 22(5):593-8. PubMed ID: 9363358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimating the sensory irritating potency of airborne nonreactive volatile organic chemicals and their mixtures.
    Alarie Y; Schaper M; Nielsen GD; Abraham MH
    SAR QSAR Environ Res; 1996; 5(3):151-65. PubMed ID: 9114512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The involvement of TRP channels in sensory irritation: a mechanistic approach toward a better understanding of the biological effects of local irritants.
    Lehmann R; Schöbel N; Hatt H; van Thriel C
    Arch Toxicol; 2016 Jun; 90(6):1399-413. PubMed ID: 27037703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamics of nasal irritation from pulsed homologous alcohols.
    Wise PM; Zhao K; Wysocki CJ
    Chem Senses; 2010 Nov; 35(9):823-9. PubMed ID: 20858746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of two stimulus-delivery systems for measurement of nasal pungency thresholds.
    Cometto-Muñiz JE; Cain WS; Hiraishi T; Abraham MH; Gola JM
    Chem Senses; 2000 Jun; 25(3):285-91. PubMed ID: 10866987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of mecamylamine on trigeminal and olfactory chemoreception of nicotine.
    Thuerauf N; Markovic K; Braun G; Bleich S; Reulbach U; Kornhuber J; Lunkenheimer J
    Neuropsychopharmacology; 2006 Feb; 31(2):450-61. PubMed ID: 16123771
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dose-dependent stereoselective activation of the trigeminal sensory system by nicotine in man.
    Thuerauf N; Kaegler M; Dietz R; Barocka A; Kobal G
    Psychopharmacology (Berl); 1999 Mar; 142(3):236-43. PubMed ID: 10208315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.