BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8999119)

  • 1. Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process.
    Bleich J; Müller BW
    J Microencapsul; 1996; 13(2):131-9. PubMed ID: 8999119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residual solvents in biodegradable microparticles. Influence of process parameters on the residual solvent in microparticles produced by the aerosol solvent extraction system (ASES) process.
    Ruchatz F; Kleinebudde P; Muller BW
    J Pharm Sci; 1997 Jan; 86(1):101-5. PubMed ID: 9002467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of inhalable rifampicin-poly(L-lactide) microparticles by supercritical anti-solvent process.
    Patomchaiviwat V; Paeratakul O; Kulvanich P
    AAPS PharmSciTech; 2008; 9(4):1119-29. PubMed ID: 18989787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of aerosol solvent extraction system (ASES) process for preparation of liposomes in a dry and reconstitutable form.
    Kunastitchai S; Pichert L; Sarisuta N; Müller BW
    Int J Pharm; 2006 Jun; 316(1-2):93-101. PubMed ID: 16621359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size controlled production of biodegradable microparticles with supercritical gases.
    Thies J; Müller BW
    Eur J Pharm Biopharm; 1998 Jan; 45(1):67-74. PubMed ID: 9689537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric microspheres prepared by spraying into compressed carbon dioxide.
    Bodmeier R; Wang H; Dixon DJ; Mawson S; Johnston KP
    Pharm Res; 1995 Aug; 12(8):1211-7. PubMed ID: 7494836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug solubility in phospholipid carrier as a predictive parameter for drug recovery in microparticles produced by the aerosol solvent extraction system (ASES) process.
    Sarisuta N; Kunastitchai S; Pichert L; Müller BW
    Drug Dev Ind Pharm; 2007 Sep; 33(9):932-44. PubMed ID: 17891579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured microspheres produced by supercritical fluid extraction of emulsions.
    Della Porta G; Reverchon E
    Biotechnol Bioeng; 2008 Aug; 100(5):1020-33. PubMed ID: 18383122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.
    Moribe K; Fukino M; Tozuka Y; Higashi K; Yamamoto K
    Int J Pharm; 2009 Oct; 380(1-2):201-5. PubMed ID: 19576974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process variable implications for residual solvent removal and polymer morphology in the formation of gentamycin-loaded poly (L-lactide) microparticles.
    Falk RF; Randolph TW
    Pharm Res; 1998 Aug; 15(8):1233-7. PubMed ID: 9706054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical properties of lactide-co-glycolide polymers for the use in microparticle preparation by the aerosol solvent extraction system.
    Engwicht A; Girreser U; Müller BW
    Int J Pharm; 1999 Aug; 185(1):61-72. PubMed ID: 10425366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of poly(L-lactide) microparticles based on supercritical CO2.
    Chen AZ; Pu XM; Kang YQ; Liao L; Yao YD; Yin GF
    J Mater Sci Mater Med; 2007 Dec; 18(12):2339-45. PubMed ID: 17569002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon dioxide extraction of residual solvents in poly(lactide-co-glycolide) microparticles.
    Herberger J; Murphy K; Munyakazi L; Cordia J; Westhaus E
    J Control Release; 2003 Jun; 90(2):181-95. PubMed ID: 12810301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable semi-crystalline comb polyesters influence the microsphere production by means of a supercritical fluid extraction technique (ASES).
    Breitenbach A; Mohr D; Kissel T
    J Control Release; 2000 Jan; 63(1-2):53-68. PubMed ID: 10640580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The parameters influencing the morphology of poly(ɛ-caprolactone) microspheres and the resulting release of encapsulated drugs.
    Bile J; Bolzinger MA; Vigne C; Boyron O; Valour JP; Fessi H; Chevalier Y
    Int J Pharm; 2015 Oct; 494(1):152-66. PubMed ID: 26235922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quality improvement of spray-dried, protein-loaded D,L-PLA microspheres by appropriate polymer solvent selection.
    Gander B; Wehrli E; Alder R; Merkle HP
    J Microencapsul; 1995; 12(1):83-97. PubMed ID: 7730960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NSAID drugs release from injectable microspheres produced by supercritical fluid emulsion extraction.
    Della Porta G; Falco N; Reverchon E
    J Pharm Sci; 2010 Mar; 99(3):1484-99. PubMed ID: 19780130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process.
    Koushik K; Kompella UB
    Pharm Res; 2004 Mar; 21(3):524-35. PubMed ID: 15070105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercritical antisolvent precipitation of PHBV microparticles.
    Costa MS; Duarte AR; Cardoso MM; Duarte CM
    Int J Pharm; 2007 Jan; 328(1):72-7. PubMed ID: 16971075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Fe3O4-poly(L-lactide) magnetic microparticles in supercritical CO2.
    Chen AZ; Kang YQ; Pu XM; Yin GF; Li Y; Hu JY
    J Colloid Interface Sci; 2009 Feb; 330(2):317-22. PubMed ID: 19036387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.