These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 8999792)
21. Spectroscopic and theoretical investigation of a complex with an [O═Fe(IV)-O-Fe(IV)═O] core related to methane monooxygenase intermediate Q. Stoian SA; Xue G; Bominaar EL; Que L; Münck E J Am Chem Soc; 2014 Jan; 136(4):1545-58. PubMed ID: 24380398 [TBL] [Abstract][Full Text] [Related]
22. Dioxygen activation at non-heme diiron centers: oxidation of a proximal residue in the I100W variant of toluene/o-xylene monooxygenase hydroxylase. Murray LJ; García-Serres R; McCormick MS; Davydov R; Naik SG; Kim SH; Hoffman BM; Huynh BH; Lippard SJ Biochemistry; 2007 Dec; 46(51):14795-809. PubMed ID: 18044971 [TBL] [Abstract][Full Text] [Related]
23. A diiron(IV) complex that cleaves strong C-H and O-H bonds. Wang D; Farquhar ER; Stubna A; Münck E; Que L Nat Chem; 2009 May; 1(2):145-50. PubMed ID: 19885382 [TBL] [Abstract][Full Text] [Related]
24. Determination by X-ray absorption spectroscopy of the Fe-Fe separation in the oxidized form of the hydroxylase of methane monooxygenase alone and in the presence of MMOD. Rudd DJ; Sazinsky MH; Merkx M; Lippard SJ; Hedman B; Hodgson KO Inorg Chem; 2004 Jul; 43(15):4579-89. PubMed ID: 15257585 [TBL] [Abstract][Full Text] [Related]
25. Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase. Yoshizawa K J Inorg Biochem; 2000 Jan; 78(1):23-34. PubMed ID: 10714702 [TBL] [Abstract][Full Text] [Related]
26. Theoretical study of the mechanism of alkane hydroxylation and ethylene epoxidation reactions catalyzed by diiron bis-oxo complexes. The effect of substrate molecules. Musaev DG; Basch H; Morokuma K J Am Chem Soc; 2002 Apr; 124(15):4135-48. PubMed ID: 11942853 [TBL] [Abstract][Full Text] [Related]
28. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase. Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM Biochemistry; 2004 May; 43(20):5953-64. PubMed ID: 15147179 [TBL] [Abstract][Full Text] [Related]
29. Bis(mu-oxo)dimetal "diamond" cores in copper and iron complexes relevant to biocatalysis. Que L; Tolman WB Angew Chem Int Ed Engl; 2002 Apr; 41(7):1114-37. PubMed ID: 12491240 [TBL] [Abstract][Full Text] [Related]
30. Hydroxylation catalysis by mononuclear and dinuclear iron oxo catalysts: a methane monooxygenase model system versus the Fenton reagent Fe(IV)O(H2O)5(2+). Gopakumar G; Belanzoni P; Baerends EJ Inorg Chem; 2012 Jan; 51(1):63-75. PubMed ID: 22221279 [TBL] [Abstract][Full Text] [Related]
31. A tailor-made ligand to mimic the active site of diiron enzymes: an air-oxidized high-valent Fe(III) h.s.(μ-O)2Fe(IV) h.s. species. Strautmann JB; Walleck S; Bögge H; Stammler A; Glaser T Chem Commun (Camb); 2011 Jan; 47(2):695-7. PubMed ID: 21088779 [TBL] [Abstract][Full Text] [Related]
32. Sc Banerjee S; Draksharapu A; Crossland PM; Fan R; Guo Y; Swart M; Que L J Am Chem Soc; 2020 Mar; 142(9):4285-4297. PubMed ID: 32017545 [TBL] [Abstract][Full Text] [Related]
33. Mössbauer and DFT study of the ferromagnetically coupled diiron(IV) precursor to a complex with an Fe(IV)(2)O(2) diamond core. Martinho M; Xue G; Fiedler AT; Que L; Bominaar EL; Münck E J Am Chem Soc; 2009 Apr; 131(16):5823-30. PubMed ID: 19338307 [TBL] [Abstract][Full Text] [Related]
34. Recombinant toluene-4-monooxygenase: catalytic and Mössbauer studies of the purified diiron and rieske components of a four-protein complex. Pikus JD; Studts JM; Achim C; Kauffmann KE; Münck E; Steffan RJ; McClay K; Fox BG Biochemistry; 1996 Jul; 35(28):9106-19. PubMed ID: 8703915 [TBL] [Abstract][Full Text] [Related]
35. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
36. Modeling dioxygen-activating centers in non-heme diiron enzymes: carboxylate shifts in diiron(II) complexes supported by sterically hindered carboxylate ligands. Lee D; Lippard SJ Inorg Chem; 2002 May; 41(10):2704-19. PubMed ID: 12005495 [TBL] [Abstract][Full Text] [Related]
37. High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase. Castillo RG; Banerjee R; Allpress CJ; Rohde GT; Bill E; Que L; Lipscomb JD; DeBeer S J Am Chem Soc; 2017 Dec; 139(49):18024-18033. PubMed ID: 29136468 [TBL] [Abstract][Full Text] [Related]
38. Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase. Torrent M; Musaev DG; Basch H; Morokuma K J Comput Chem; 2002 Jan; 23(1):59-76. PubMed ID: 11913390 [TBL] [Abstract][Full Text] [Related]
39. A density functional evaluation of an Fe(III)-Fe(IV) model diiron cluster: comparisons with ribonucleotide reductase intermediate X. Han WG; Lovell T; Liu T; Noodleman L Inorg Chem; 2003 Apr; 42(8):2751-8. PubMed ID: 12691585 [TBL] [Abstract][Full Text] [Related]
40. The structure of a designed diiron(III) protein: implications for cofactor stabilization and catalysis. Wade H; Stayrook SE; Degrado WF Angew Chem Int Ed Engl; 2006 Jul; 45(30):4951-4. PubMed ID: 16819737 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]