BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8999853)

  • 1. Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides.
    Kandror O; Sherman M; Moerschell R; Goldberg AL
    J Biol Chem; 1997 Jan; 272(3):1730-4. PubMed ID: 8999853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trigger factor is involved in GroEL-dependent protein degradation in Escherichia coli and promotes binding of GroEL to unfolded proteins.
    Kandror O; Sherman M; Rhode M; Goldberg AL
    EMBO J; 1995 Dec; 14(23):6021-7. PubMed ID: 8846794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock-induced phosphorylation of GroEL alters its binding and dissociation from unfolded proteins.
    Sherman M; Goldberg AL
    J Biol Chem; 1994 Dec; 269(50):31479-83. PubMed ID: 7527389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures.
    Kandror O; Goldberg AL
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4978-81. PubMed ID: 9144175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chaperonin cycle cannot substitute for prolyl isomerase activity, but GroEL alone promotes productive folding of a cyclophilin-sensitive substrate to a cyclophilin-resistant form.
    von Ahsen O; Tropschug M; Pfanner N; Rassow J
    EMBO J; 1997 Aug; 16(15):4568-78. PubMed ID: 9303301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Destabilization of the complete protein secondary structure on binding to the chaperone GroEL.
    Zahn R; Spitzfaden C; Ottiger M; Wüthrich K; Plückthun A
    Nature; 1994 Mar; 368(6468):261-5. PubMed ID: 7908413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Escherichia coli trigger factor.
    Hesterkamp T; Bukau B
    FEBS Lett; 1996 Jun; 389(1):32-4. PubMed ID: 8682200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple cycles of global unfolding of GroEL-bound cyclophilin A evidenced by NMR.
    Nieba-Axmann SE; Ottiger M; Wüthrich K; Plückthun A
    J Mol Biol; 1997 Sep; 271(5):803-18. PubMed ID: 9299328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro.
    Huang YS; Chuang DT
    J Biol Chem; 1999 Apr; 274(15):10405-12. PubMed ID: 10187830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-translational involvement of the chaperonin GroEL in the folding of newly translated polypeptides.
    Ying BW; Taguchi H; Kondo M; Ueda T
    J Biol Chem; 2005 Mar; 280(12):12035-40. PubMed ID: 15664980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.
    Kerner MJ; Naylor DJ; Ishihama Y; Maier T; Chang HC; Stines AP; Georgopoulos C; Frishman D; Hayer-Hartl M; Mann M; Hartl FU
    Cell; 2005 Jul; 122(2):209-20. PubMed ID: 16051146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid degradation of an abnormal protein in Escherichia coli proceeds through repeated cycles of association with GroEL.
    Kandror O; Sherman M; Goldberg A
    J Biol Chem; 1999 Dec; 274(53):37743-9. PubMed ID: 10608834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GroEL reversibly binds to, and causes rapid inactivation of, human carbonic anhydrase II at high temperatures.
    Persson M; Carlsson U; Bergenhem NC
    Biochim Biophys Acta; 1996 Dec; 1298(2):191-8. PubMed ID: 8980645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL.
    Zahn R; Buckle AM; Perrett S; Johnson CM; Corrales FJ; Golbik R; Fersht AR
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15024-9. PubMed ID: 8986757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage.
    Corrales FJ; Fersht AR
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4509-12. PubMed ID: 8633099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation in vitro of complexes between an abnormal fusion protein and the heat shock proteins from Escherichia coli and yeast mitochondria.
    Sherman MY; Goldberg AL
    J Bacteriol; 1991 Nov; 173(22):7249-56. PubMed ID: 1938919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature of GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor DnaK.
    Vorderwülbecke S; Kramer G; Merz F; Kurz TA; Rauch T; Zachmann-Brand B; Bukau B; Deuerling E
    FEBS Lett; 2005 Jun; 579(15):181-7. PubMed ID: 16021693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor and DnaK.
    Vorderwülbecke S; Kramer G; Merz F; Kurz TA; Rauch T; Zachmann-Brand B; Bukau B; Deuerling E
    FEBS Lett; 2004 Feb; 559(1-3):181-7. PubMed ID: 14960329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyzed and assisted protein folding of ribonuclease T1.
    Schmid FX; Frech C; Scholz C; Walter S
    Biol Chem; 1996; 377(7-8):417-24. PubMed ID: 8922275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GroEL under heat-shock. Switching from a folding to a storing function.
    Llorca O; Galán A; Carrascosa JL; Muga A; Valpuesta JM
    J Biol Chem; 1998 Dec; 273(49):32587-94. PubMed ID: 9829996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.