These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9000011)

  • 1. Development of improved tRNAs for in vitro biosynthesis of proteins containing unnatural amino acids.
    Cload ST; Liu DR; Froland WA; Schultz PG
    Chem Biol; 1996 Dec; 3(12):1033-8. PubMed ID: 9000011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amber codon-mediated expanded saturation mutagenesis of proteins using a cell-free translation system.
    Shozen N; Watanabe T; Hohsaka T
    J Biosci Bioeng; 2012 Jun; 113(6):704-9. PubMed ID: 22365415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli.
    Magliery TJ; Anderson JC; Schultz PG
    J Mol Biol; 2001 Mar; 307(3):755-69. PubMed ID: 11273699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of amber suppressor tRNAs appropriate for incorporation of nonnatural amino acids.
    Taira H; Matsushita Y; Kojima K; Hohsaka T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):233-4. PubMed ID: 17150903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system.
    Taira H; Matsushita Y; Kojima K; Shiraga K; Hohsaka T
    Biochem Biophys Res Commun; 2008 Sep; 374(2):304-8. PubMed ID: 18634752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general approach for the generation of orthogonal tRNAs.
    Wang L; Schultz PG
    Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 1: minimizing misacylation.
    Rodriguez EA; Lester HA; Dougherty DA
    RNA; 2007 Oct; 13(10):1703-14. PubMed ID: 17698638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 2: evaluating suppression efficiency.
    Rodriguez EA; Lester HA; Dougherty DA
    RNA; 2007 Oct; 13(10):1715-22. PubMed ID: 17698637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an 'orthogonal' suppressor tRNA derived from E. coli tRNA2(Gln).
    Liu DR; Magliery TJ; Schultz PG
    Chem Biol; 1997 Sep; 4(9):685-91. PubMed ID: 9331409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enhanced system for unnatural amino acid mutagenesis in E. coli.
    Young TS; Ahmad I; Yin JA; Schultz PG
    J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro incorporation of nonnatural amino acids into protein using tRNA(Cys)-derived opal, ochre, and amber suppressor tRNAs.
    Gubbens J; Kim SJ; Yang Z; Johnson AE; Skach WR
    RNA; 2010 Aug; 16(8):1660-72. PubMed ID: 20581130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bacterial strain with a unique quadruplet codon specifying non-native amino acids.
    Chatterjee A; Lajoie MJ; Xiao H; Church GM; Schultz PG
    Chembiochem; 2014 Aug; 15(12):1782-6. PubMed ID: 24867343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple incorporation of non-natural amino acids into a single protein using tRNAs with non-standard structures.
    Ohtsuki T; Manabe T; Sisido M
    FEBS Lett; 2005 Dec; 579(30):6769-74. PubMed ID: 16310775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of single base insertion into anticodon loop of frameshift suppressor tRNA.
    Hohsaka T; Taira H; Fukushima M; Sisido M
    Nucleic Acids Res Suppl; 2001; (1):189-90. PubMed ID: 12836328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro suppression of an amber mutation by a chemically aminoacylated transfer RNA prepared by runoff transcription.
    Noren CJ; Anthony-Cahill SJ; Suich DJ; Noren KA; Griffith MC; Schultz PG
    Nucleic Acids Res; 1990 Jan; 18(1):83-8. PubMed ID: 2308838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of specialty functions by the position-specific incorporation of nonnatural amino acids into proteins through four-base codon/anticodon pairs.
    Sisido M; Hohsaka T
    Appl Microbiol Biotechnol; 2001 Oct; 57(3):274-81. PubMed ID: 11759673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.
    Taira H; Hohsaka T; Sisido M
    Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actions of the anticodon arm in translation on the phenotypes of RNA mutants.
    Yarus M; Cline SW; Wier P; Breeden L; Thompson RC
    J Mol Biol; 1986 Nov; 192(2):235-55. PubMed ID: 2435916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Five-base codons for incorporation of nonnatural amino acids into proteins.
    Hohsaka T; Ashizuka Y; Murakami H; Sisido M
    Nucleic Acids Res; 2001 Sep; 29(17):3646-51. PubMed ID: 11522835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nucleotide change in the anticodon of an Escherichia coli serine transfer RNA results in supD-amber suppression.
    Steege DA
    Nucleic Acids Res; 1983 Jun; 11(11):3823-32. PubMed ID: 6344015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.