These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62 related articles for article (PubMed ID: 9000143)
1. Ras-responsiveness of the HIV-1 LTR requires RBF-1 and RBF-2 binding sites. Bell B; Sadowski I Oncogene; 1996 Dec; 13(12):2687-97. PubMed ID: 9000143 [TBL] [Abstract][Full Text] [Related]
2. Both PU.1 and nuclear factor-kappa B mediate lipopolysaccharide- induced HIV-1 long terminal repeat transcription in macrophages. Lodie TA; Reiner M; Coniglio S; Viglianti G; Fenton MJ J Immunol; 1998 Jul; 161(1):268-76. PubMed ID: 9647233 [TBL] [Abstract][Full Text] [Related]
3. NF-kappaB-repressing factor inhibits elongation of human immunodeficiency virus type 1 transcription by DRB sensitivity-inducing factor. Dreikhausen U; Hiebenthal-Millow K; Bartels M; Resch K; Nourbakhsh M Mol Cell Biol; 2005 Sep; 25(17):7473-83. PubMed ID: 16107696 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of the basal-level activity of HIV-1 long terminal repeat by HIV-1 nucleocapsid protein. Zhang JL; Sharma PL; Crumpacker CS Virology; 2000 Mar; 268(2):251-63. PubMed ID: 10704334 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication. McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770 [TBL] [Abstract][Full Text] [Related]
6. Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T cells. Sieweke MH; Tekotte H; Jarosch U; Graf T EMBO J; 1998 Mar; 17(6):1728-39. PubMed ID: 9501094 [TBL] [Abstract][Full Text] [Related]
7. Specific interaction of TFII-I with an upstream element on the HIV-1 LTR regulates induction of latent provirus. Malcolm T; Kam J; Pour PS; Sadowski I FEBS Lett; 2008 Nov; 582(28):3903-8. PubMed ID: 18976654 [TBL] [Abstract][Full Text] [Related]
8. Naturally occurring human immunodeficiency virus type 1 long terminal repeats have a frequently observed duplication that binds RBF-2 and represses transcription. Estable MC; Bell B; Hirst M; Sadowski I J Virol; 1998 Aug; 72(8):6465-74. PubMed ID: 9658089 [TBL] [Abstract][Full Text] [Related]
9. The lipophosphoglycan of Leishmania donovani up-regulates HIV-1 transcription in T cells through the nuclear factor-kappaB elements. Bernier R; Barbeau B; Tremblay MJ; Olivier M J Immunol; 1998 Mar; 160(6):2881-8. PubMed ID: 9510191 [TBL] [Abstract][Full Text] [Related]
10. U5 region of the human immunodeficiency virus type 1 long terminal repeat contains TRE-like cAMP-responsive elements that bind both AP-1 and CREB/ATF proteins. Rabbi MF; Saifuddin M; Gu DS; Kagnoff MF; Roebuck KA Virology; 1997 Jun; 233(1):235-45. PubMed ID: 9201233 [TBL] [Abstract][Full Text] [Related]
11. Involvement of Ets, rel and Sp1-like proteins in lipopolysaccharide-mediated activation of the HIV-1 LTR in macrophages. Sweet MJ; Stacey KJ; Ross IL; Ostrowski MC; Hume DA J Inflamm; 1998; 48(2):67-83. PubMed ID: 9656143 [TBL] [Abstract][Full Text] [Related]
12. c-Ha-ras transfection induces human immunodeficiency virus (HIV) transcription through the HIV-enhancer in human fibroblasts and astrocytes. Arenzana-Seisdedos F; Israƫl N; Bachelerie F; Hazan U; Alcami J; Dautry F; Virelizier JL Oncogene; 1989 Nov; 4(11):1359-62. PubMed ID: 2682462 [TBL] [Abstract][Full Text] [Related]
13. TFII-I and USF (RBF-2) regulate Ras/MAPK-responsive HIV-1 transcription in T cells. Sadowski I; Mitchell DA Eur J Cancer; 2005 Nov; 41(16):2528-36. PubMed ID: 16223582 [TBL] [Abstract][Full Text] [Related]
14. Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer. Steger DJ; Workman JL EMBO J; 1997 May; 16(9):2463-72. PubMed ID: 9171359 [TBL] [Abstract][Full Text] [Related]
15. Human immunodeficiency virus type 1 long terminal repeat quasispecies differ in basal transcription and nuclear factor recruitment in human glial cells and lymphocytes. Krebs FC; Mehrens D; Pomeroy S; Goodenow MM; Wigdahl B J Biomed Sci; 1998; 5(1):31-44. PubMed ID: 9570512 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of the HIV-1 LTR as a promoter of negative sense transcription. Bentley K; Deacon N; Sonza S; Zeichner S; Churchill M Arch Virol; 2004 Dec; 149(12):2277-94. PubMed ID: 15338321 [TBL] [Abstract][Full Text] [Related]
17. Reactive oxygen species activate HIV long terminal repeat via post-translational control of NF-kappaB. Pyo CW; Yang YL; Yoo NK; Choi SY Biochem Biophys Res Commun; 2008 Nov; 376(1):180-5. PubMed ID: 18765232 [TBL] [Abstract][Full Text] [Related]
18. NFAT1 enhances HIV-1 gene expression in primary human CD4 T cells. Cron RQ; Bartz SR; Clausell A; Bort SJ; Klebanoff SJ; Lewis DB Clin Immunol; 2000 Mar; 94(3):179-91. PubMed ID: 10692237 [TBL] [Abstract][Full Text] [Related]
19. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo: implications for viral latency. Merezak C; Pierreux C; Adam E; Lemaigre F; Rousseau GG; Calomme C; Van Lint C; Christophe D; Kerkhofs P; Burny A; Kettmann R; Willems L J Virol; 2001 Aug; 75(15):6977-88. PubMed ID: 11435578 [TBL] [Abstract][Full Text] [Related]
20. Identification of human cytomegalovirus target sequences in the human immunodeficiency virus long terminal repeat. Potential role of IE2-86 binding to sequences between -120 and -20 in promoter transactivation. Yurochko AD; Huong SM; Huang ES J Hum Virol; 1999; 2(2):81-90. PubMed ID: 10225210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]