These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 9000475)

  • 81. Control of melanosome movement in intact and cultured melanophores in the bitterling, Acheilognathus lanceolatus.
    Fujishige A; Moriwake T; Ono A; Ishii Y; Tsuchiya T
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Oct; 127(2):167-75. PubMed ID: 11064284
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Melanin concentrating hormone analogues: contraction of the cyclic structure. II. Antagonist activity.
    Lebl M; Hruby VJ; Castrucci AM; Hadley ME
    Life Sci; 1989; 44(7):451-7. PubMed ID: 2784530
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Expression and characterization of European sea bass (Dicentrarchus labrax) somatolactin: assessment of in vivo metabolic effects.
    Vega-Rubín de Celis S; Gómez P; Calduch-Giner JA; Médale F; Pérez-Sánchez J
    Mar Biotechnol (NY); 2003; 5(1):92-101. PubMed ID: 12925923
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Localization and characterization of adrenergic receptors on frog skin melanophores.
    Longshore MA; Horowitz JM
    Am J Physiol; 1981 Jul; 241(1):E84-9. PubMed ID: 6972704
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Control of melanosome movements in isolated skin melanophores of a catfish Clarias batrachus (Linn.).
    Ovais M
    Indian J Physiol Pharmacol; 1994 Jul; 38(3):185-8. PubMed ID: 7814079
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of ppMCH derived peptides on PBMC proliferation and cytokine expression.
    Coumans B; Grisar T; Nahon JL; Lakaye B
    Regul Pept; 2007 Oct; 143(1-3):104-8. PubMed ID: 17537530
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.
    Pierce AL; Fox BK; Davis LK; Visitacion N; Kitahashi T; Hirano T; Grau EG
    Gen Comp Endocrinol; 2007; 154(1-3):31-40. PubMed ID: 17714712
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Synthesis and bioactivity studies of two isosteric acyclic analogues of melanin concentrating hormone.
    Matsunaga TO; Hruby VJ; Lebl M; Castrucci AM; Hadley ME
    Life Sci; 1992; 51(9):679-85. PubMed ID: 1501512
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Regulatory control of both microtubule- and actin-dependent fish melanosome movement.
    Sköld HN; Norström E; Wallin M
    Pigment Cell Res; 2002 Oct; 15(5):357-66. PubMed ID: 12213092
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Synthesis of a cyclic melanotropic peptide exhibiting both melanin-concentrating and -dispersing activities.
    Wilkes BC; Hruby VJ; Castrucci AM; Sherbrooke WC; Hadley ME
    Science; 1984 Jun; 224(4653):1111-3. PubMed ID: 6609433
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Structure-activity relationships of melanin-concentrating hormone.
    Kawazoe I; Kawauchi H; Hirano T; Naito N
    Int J Pept Protein Res; 1987 Jun; 29(6):714-21. PubMed ID: 3623802
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Spectral sensitivity of melanophores of a freshwater teleost, Zacco temmincki.
    Naora H; Takabatake I; Iga T
    Comp Biochem Physiol A Comp Physiol; 1988; 90(1):147-9. PubMed ID: 2900099
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Structure-activity studies on melanin-concentrating hormone.
    Kawauchi H; Kawazoe I
    Prog Clin Biol Res; 1988; 256():517-30. PubMed ID: 3368498
    [No Abstract]   [Full Text] [Related]  

  • 94. Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A).
    Reilein AR; Tint IS; Peunova NI; Enikolopov GN; Gelfand VI
    J Cell Biol; 1998 Aug; 142(3):803-13. PubMed ID: 9700167
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A comparison of methods of measuring chromatic activity in the integument of a teleost.
    Burton D; O'Driscoll MP
    Comp Biochem Physiol Comp Physiol; 1992 Apr; 101(4):799-801. PubMed ID: 1351454
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo.
    Aspengren S; Hedberg D; Wallin M
    Pigment Cell Res; 2006 Apr; 19(2):136-45. PubMed ID: 16524429
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The protein-phosphatase inhibitor okadaic acid mimics MSH-induced and melatonin-reversible melanosome dispersion in Xenopus laevis melanophores.
    Cozzi B; Rollag MD
    Pigment Cell Res; 1992 Sep; 5(3):148-54. PubMed ID: 1329076
    [TBL] [Abstract][Full Text] [Related]  

  • 98.
    Shinohara Y; Kasagi S; Amiya N; Hoshino Y; Ishii R; Hyodo N; Yamaguchi H; Sato S; Amano M; Takahashi A; Mizusawa K
    Front Endocrinol (Lausanne); 2022; 13():994060. PubMed ID: 36619537
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores.
    Aspengren S; Wallin M
    Pigment Cell Res; 2004 Jun; 17(3):295-301. PubMed ID: 15140076
    [TBL] [Abstract][Full Text] [Related]  

  • 100. [Ultrastructural changes in dermal melanophores in the process of pigment granule migration].
    Nikeriasova EN; Golichenikov VA
    Tsitologiia; 1983 Aug; 25(8):972-6. PubMed ID: 6356535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.