These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 9000529)
1. Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain. Chen MX; Cohen PT FEBS Lett; 1997 Jan; 400(1):136-40. PubMed ID: 9000529 [TBL] [Abstract][Full Text] [Related]
2. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation. Kang H; Sayner SL; Gross KL; Russell LC; Chinkers M Biochemistry; 2001 Sep; 40(35):10485-90. PubMed ID: 11523989 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5. Jeong JY; Johns J; Sinclair C; Park JM; Rossie S BMC Cell Biol; 2003 Mar; 4():3. PubMed ID: 12694636 [TBL] [Abstract][Full Text] [Related]
4. Identification of potential physiological activators of protein phosphatase 5. Ramsey AJ; Chinkers M Biochemistry; 2002 Apr; 41(17):5625-32. PubMed ID: 11969423 [TBL] [Abstract][Full Text] [Related]
5. Galpha(12) and Galpha(13) interact with Ser/Thr protein phosphatase type 5 and stimulate its phosphatase activity. Yamaguchi Y; Katoh H; Mori K; Negishi M Curr Biol; 2002 Aug; 12(15):1353-8. PubMed ID: 12176367 [TBL] [Abstract][Full Text] [Related]
6. A novel tetratricopeptide repeat (TPR) containing PP5 serine/threonine protein phosphatase in the malaria parasite, Plasmodium falciparum. Dobson S; Kar B; Kumar R; Adams B; Barik S BMC Microbiol; 2001; 1():31. PubMed ID: 11737864 [TBL] [Abstract][Full Text] [Related]
7. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. Yang J; Roe SM; Cliff MJ; Williams MA; Ladbury JE; Cohen PT; Barford D EMBO J; 2005 Jan; 24(1):1-10. PubMed ID: 15577939 [TBL] [Abstract][Full Text] [Related]
8. The tetratricopeptide repeat domain and a C-terminal region control the activity of Ser/Thr protein phosphatase 5. Sinclair C; Borchers C; Parker C; Tomer K; Charbonneau H; Rossie S J Biol Chem; 1999 Aug; 274(33):23666-72. PubMed ID: 10438550 [TBL] [Abstract][Full Text] [Related]
9. Identification of chaulmoogric acid as a small molecule activator of protein phosphatase 5. Cher C; Tremblay MH; Barber JR; Chung Ng S; Zhang B Appl Biochem Biotechnol; 2010 Mar; 160(5):1450-9. PubMed ID: 19404779 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the tetratricopeptide-containing domain of BUB1, BUBR1, and PP5 proves that domain amphiphilicity over amino acid sequence specificity governs protein adsorption and interfacial activity. Beaufils S; Grossmann JG; Renault A; Bolanos-Garcia VM J Phys Chem B; 2008 Jul; 112(27):7984-91. PubMed ID: 18547097 [TBL] [Abstract][Full Text] [Related]
11. Selective activators of protein phosphatase 5 target the auto-inhibitory mechanism. Haslbeck V; Drazic A; Eckl JM; Alte F; Helmuth M; Popowicz G; Schmidt W; Braun F; Weiwad M; Fischer G; Gemmecker G; Sattler M; Striggow F; Groll M; Richter K Biosci Rep; 2015 Apr; 35(3):. PubMed ID: 26182372 [TBL] [Abstract][Full Text] [Related]
12. The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. Chen MS; Silverstein AM; Pratt WB; Chinkers M J Biol Chem; 1996 Dec; 271(50):32315-20. PubMed ID: 8943293 [TBL] [Abstract][Full Text] [Related]
13. Characterization of protein phosphatase 5 from three lepidopteran insects: Helicoverpa armigera, Mythimna separata and Plutella xylostella. Chen X; Lü S; Zhang Y PLoS One; 2014; 9(5):e97437. PubMed ID: 24823652 [TBL] [Abstract][Full Text] [Related]
14. Exploration of the binding determinants of protein phosphatase 5 (PP5) reveals a chaperone-independent activation mechanism. Devi S; Charvat A; Millbern Z; Vinueza N; Gestwicki JE J Biol Chem; 2024 Jul; 300(7):107435. PubMed ID: 38830406 [TBL] [Abstract][Full Text] [Related]
15. Ro 90-7501 inhibits PP5 through a novel, TPR-dependent mechanism. Hong TJ; Park K; Choi EW; Hahn JS Biochem Biophys Res Commun; 2017 Jan; 482(2):215-220. PubMed ID: 27840051 [TBL] [Abstract][Full Text] [Related]
16. Rac GTPase signaling through the PP5 protein phosphatase. Gentile S; Darden T; Erxleben C; Romeo C; Russo A; Martin N; Rossie S; Armstrong DL Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5202-6. PubMed ID: 16549782 [TBL] [Abstract][Full Text] [Related]
17. Molecular recognition via coupled folding and binding in a TPR domain. Cliff MJ; Williams MA; Brooke-Smith J; Barford D; Ladbury JE J Mol Biol; 2005 Feb; 346(3):717-32. PubMed ID: 15713458 [TBL] [Abstract][Full Text] [Related]
18. Microcystin affinity purification of plant protein phosphatases: PP1C, PP5 and a regulatory A-subunit of PP2A. Meek S; Morrice N; MacKintosh C FEBS Lett; 1999 Sep; 457(3):494-8. PubMed ID: 10471836 [TBL] [Abstract][Full Text] [Related]
19. Suramin is a novel activator of PP5 and biphasically modulates S100-activated PP5 activity. Yamaguchi F; Yamamura S; Shimamoto S; Tokumitsu H; Tokuda M; Kobayashi R Appl Biochem Biotechnol; 2014 Jan; 172(1):237-47. PubMed ID: 24068474 [TBL] [Abstract][Full Text] [Related]
20. Identification and biochemical characterisation of a protein phosphatase 5 homologue from Plasmodium falciparum. Lindenthal C; Klinkert MQ Mol Biochem Parasitol; 2002 Apr; 120(2):257-68. PubMed ID: 11897131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]