These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods. Hosokawa A J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836 [TBL] [Abstract][Full Text] [Related]
3. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models. Mézière F; Muller M; Bossy E; Derode A Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533 [TBL] [Abstract][Full Text] [Related]
4. Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory. Williams JL J Acoust Soc Am; 1992 Feb; 91(2):1106-12. PubMed ID: 1556311 [TBL] [Abstract][Full Text] [Related]
5. In vitro acoustic waves propagation in human and bovine cancellous bone. Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891 [TBL] [Abstract][Full Text] [Related]
6. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods. Hosokawa A Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171 [TBL] [Abstract][Full Text] [Related]
7. Ultrasonic propagation in cancellous bone: a new stratified model. Hughes ER; Leighton TG; Petley GW; White PR Ultrasound Med Biol; 1999 Jun; 25(5):811-21. PubMed ID: 10414898 [TBL] [Abstract][Full Text] [Related]
8. Short ultrasonic waves in cancellous bone. Kaczmarek M; Kubik J; Pakula M Ultrasonics; 2002 May; 40(1-8):95-100. PubMed ID: 12160076 [TBL] [Abstract][Full Text] [Related]
9. What kind of waves are measured in trabecular bone? Pakula M Ultrasonics; 2022 Jul; 123():106692. PubMed ID: 35176689 [TBL] [Abstract][Full Text] [Related]
10. Propagation of two longitudinal waves in human cancellous bone: an in vitro study. Mizuno K; Matsukawa M; Otani T; Laugier P; Padilla F J Acoust Soc Am; 2009 May; 125(5):3460-6. PubMed ID: 19425685 [TBL] [Abstract][Full Text] [Related]
11. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone. Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556 [TBL] [Abstract][Full Text] [Related]
12. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone. Lee KI; Yoon SW J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640 [TBL] [Abstract][Full Text] [Related]
15. In vitro estimation of fast and slow wave parameters of thin trabecular bone using space-alternating generalized expectation-maximization algorithm. Grimes M; Bouhadjera A; Haddad S; Benkedidah T Ultrasonics; 2012 Jul; 52(5):614-21. PubMed ID: 22284937 [TBL] [Abstract][Full Text] [Related]
16. Ultrasonic wave propagation in human cancellous bone: application of Biot theory. Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965 [TBL] [Abstract][Full Text] [Related]
17. Propagation of ultrasonic waves through demineralized cancellous bone. Mohamed MM; Shaat LT; Mahmoud AN IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):279-88. PubMed ID: 12699161 [TBL] [Abstract][Full Text] [Related]
18. Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone. Hughes ER; Leighton TG; White PR; Petley GW J Acoust Soc Am; 2007 Jan; 121(1):568-74. PubMed ID: 17297810 [TBL] [Abstract][Full Text] [Related]
19. Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models. Leclaire P; Kelders L; Lauriks W; Glorieux C; Thoen J Stud Health Technol Inform; 1997; 40():139-55. PubMed ID: 10168875 [TBL] [Abstract][Full Text] [Related]
20. Application of the biot model to ultrasound in bone: direct problem. Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]