BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 9001230)

  • 1. Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems.
    Mu D; Tursun M; Duckett DR; Drummond JT; Modrich P; Sancar A
    Mol Cell Biol; 1997 Feb; 17(2):760-9. PubMed ID: 9001230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding discrimination of MutS to a set of lesions and compound lesions (base damage and mismatch) reveals its potential role as a cisplatin-damaged DNA sensing protein.
    Fourrier L; Brooks P; Malinge JM
    J Biol Chem; 2003 Jun; 278(23):21267-75. PubMed ID: 12654906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human colon cancer cells surviving high doses of cisplatin or oxaliplatin in vitro are not defective in DNA mismatch repair proteins.
    Sergent C; Franco N; Chapusot C; Lizard-Nacol S; Isambert N; Correia M; Chauffert B
    Cancer Chemother Pharmacol; 2002 Jun; 49(6):445-52. PubMed ID: 12107548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair.
    Gu L; Hong Y; McCulloch S; Watanabe H; Li GM
    Nucleic Acids Res; 1998 Mar; 26(5):1173-8. PubMed ID: 9469823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional structural views of damaged-DNA recognition: T4 endonuclease V, E. coli Vsr protein, and human nucleotide excision repair factor XPA.
    Morikawa K; Shirakawa M
    Mutat Res; 2000 Aug; 460(3-4):257-75. PubMed ID: 10946233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mismatch repair goes meiotic.
    Hassold TJ
    Nat Genet; 1996 Jul; 13(3):261-2. PubMed ID: 8673119
    [No Abstract]   [Full Text] [Related]  

  • 7. Highly elevated ultraviolet-induced mutation frequency in isolated Chinese hamster cell lines defective in nucleotide excision repair and mismatch repair proteins.
    Nara K; Nagashima F; Yasui A
    Cancer Res; 2001 Jan; 61(1):50-2. PubMed ID: 11196196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of platinum-DNA adduct repair.
    Chaney SG; Vaisman A
    J Inorg Biochem; 1999 Oct; 77(1-2):71-81. PubMed ID: 10626357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of mismatch repair activity in simian virus 40 large T antigen-immortalized BPH-1 human prostatic epithelial cell line.
    Yeh CC; Lee C; Huang MC; Dahiya R
    Mol Carcinog; 2001 Jul; 31(3):145-51. PubMed ID: 11479923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents.
    Christmann M; Kaina B
    J Biol Chem; 2000 Nov; 275(46):36256-62. PubMed ID: 10954713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins.
    Kirkpatrick DT; Petes TD
    Nature; 1997 Jun; 387(6636):929-31. PubMed ID: 9202128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair.
    Johnson RE; Kovvali GK; Guzder SN; Amin NS; Holm C; Habraken Y; Sung P; Prakash L; Prakash S
    J Biol Chem; 1996 Nov; 271(45):27987-90. PubMed ID: 8910404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of MutS ATP-dependent functional activities by DNA containing a cisplatin compound lesion (base damage and mismatch).
    Sedletska Y; Fourrier L; Malinge JM
    J Mol Biol; 2007 May; 369(1):27-40. PubMed ID: 17400248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific binding of human MSH2.MSH6 mismatch-repair protein heterodimers to DNA incorporating thymine- or uracil-containing UV light photoproducts opposite mismatched bases.
    Wang H; Lawrence CW; Li GM; Hays JB
    J Biol Chem; 1999 Jun; 274(24):16894-900. PubMed ID: 10358035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of cisplatin--DNA adducts by the mammalian excision nuclease.
    Zamble DB; Mu D; Reardon JT; Sancar A; Lippard SJ
    Biochemistry; 1996 Aug; 35(31):10004-13. PubMed ID: 8756462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cellular basis of the efficacy of the trinuclear platinum complex BBR 3464 against cisplatin-resistant cells.
    Perego P; Gatti L; Caserini C; Supino R; Colangelo D; Leone R; Spinelli S; Farrell N; Zunino F
    J Inorg Biochem; 1999 Oct; 77(1-2):59-64. PubMed ID: 10626355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress inactivates the human DNA mismatch repair system.
    Chang CL; Marra G; Chauhan DP; Ha HT; Chang DK; Ricciardiello L; Randolph A; Carethers JM; Boland CR
    Am J Physiol Cell Physiol; 2002 Jul; 283(1):C148-54. PubMed ID: 12055083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human MutSalpha recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct.
    Duckett DR; Drummond JT; Murchie AI; Reardon JT; Sancar A; Lilley DM; Modrich P
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6443-7. PubMed ID: 8692834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV-induced endonuclease III-sensitive sites at the mating type loci in Saccharomyces cerevisiae are repaired by nucleotide excision repair: RAD7 and RAD16 are not required for their removal from HML alpha.
    Reed SH; Boiteux S; Waters R
    Mol Gen Genet; 1996 Mar; 250(4):505-14. PubMed ID: 8602168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient mismatch repair gene transfection for functional analysis of genetic hMLH1 and hMSH2 variants.
    Brieger A; Trojan J; Raedle J; Plotz G; Zeuzem S
    Gut; 2002 Nov; 51(5):677-84. PubMed ID: 12377806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.