BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 9001254)

  • 1. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C.
    Sartorelli V; Huang J; Hamamori Y; Kedes L
    Mol Cell Biol; 1997 Feb; 17(2):1010-26. PubMed ID: 9001254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation.
    Chen SL; Dowhan DH; Hosking BM; Muscat GE
    Genes Dev; 2000 May; 14(10):1209-28. PubMed ID: 10817756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation.
    Eckner R; Yao TP; Oldread E; Livingston DM
    Genes Dev; 1996 Oct; 10(19):2478-90. PubMed ID: 8843199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist.
    Hamamori Y; Wu HY; Sartorelli V; Kedes L
    Mol Cell Biol; 1997 Nov; 17(11):6563-73. PubMed ID: 9343420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2.
    Black BL; Molkentin JD; Olson EN
    Mol Cell Biol; 1998 Jan; 18(1):69-77. PubMed ID: 9418854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5.
    Roth JF; Shikama N; Henzen C; Desbaillets I; Lutz W; Marino S; Wittwer J; Schorle H; Gassmann M; Eckner R
    EMBO J; 2003 Oct; 22(19):5186-96. PubMed ID: 14517256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human T cell leukemia/lymphotropic virus type 1 Tax protein represses MyoD-dependent transcription by inhibiting MyoD-binding to the KIX domain of p300. A potential mechanism for Tax-mediated repression of the transcriptional activity of basic helix-loop-helix factors.
    Riou P; Bex F; Gazzolo L
    J Biol Chem; 2000 Apr; 275(14):10551-60. PubMed ID: 10744749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exogenous expression of a dominant negative RORalpha1 vector in muscle cells impairs differentiation: RORalpha1 directly interacts with p300 and myoD.
    Lau P; Bailey P; Dowhan DH; Muscat GE
    Nucleic Acids Res; 1999 Jan; 27(2):411-20. PubMed ID: 9862959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between acetylated MyoD and the bromodomain of CBP and/or p300.
    Polesskaya A; Naguibneva I; Duquet A; Bengal E; Robin P; Harel-Bellan A
    Mol Cell Biol; 2001 Aug; 21(16):5312-20. PubMed ID: 11463815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors.
    Azmi S; Ozog A; Taneja R
    J Biol Chem; 2004 Dec; 279(50):52643-52. PubMed ID: 15448136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The orphan nuclear receptor, COUP-TF II, inhibits myogenesis by post-transcriptional regulation of MyoD function: COUP-TF II directly interacts with p300 and myoD.
    Bailey P; Sartorelli V; Hamamori Y; Muscat GE
    Nucleic Acids Res; 1998 Dec; 26(23):5501-10. PubMed ID: 9826778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation.
    Novitch BG; Spicer DB; Kim PS; Cheung WL; Lassar AB
    Curr Biol; 1999 May; 9(9):449-59. PubMed ID: 10322110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation.
    Puri PL; Sartorelli V; Yang XJ; Hamamori Y; Ogryzko VV; Howard BH; Kedes L; Wang JY; Graessmann A; Nakatani Y; Levrero M
    Mol Cell; 1997 Dec; 1(1):35-45. PubMed ID: 9659901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program.
    Mal A; Sturniolo M; Schiltz RL; Ghosh MK; Harter ML
    EMBO J; 2001 Apr; 20(7):1739-53. PubMed ID: 11285237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel E1A domain mediates skeletal-muscle-specific enhancer repression independently of pRB and p300 binding.
    Sandmöller A; Meents H; Arnold HH
    Mol Cell Biol; 1996 Oct; 16(10):5846-56. PubMed ID: 8816499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo.
    Dodou E; Xu SM; Black BL
    Mech Dev; 2003 Sep; 120(9):1021-32. PubMed ID: 14550531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation.
    Ma K; Chan JK; Zhu G; Wu Z
    Mol Cell Biol; 2005 May; 25(9):3575-82. PubMed ID: 15831463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins.
    Molkentin JD; Black BL; Martin JF; Olson EN
    Cell; 1995 Dec; 83(7):1125-36. PubMed ID: 8548800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dermo-1, a multifunctional basic helix-loop-helix protein, represses MyoD transactivation via the HLH domain, MEF2 interaction, and chromatin deacetylation.
    Gong XQ; Li L
    J Biol Chem; 2002 Apr; 277(14):12310-7. PubMed ID: 11809751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of the myogenic lineage by MEF2A, a factor that induces and cooperates with MyoD.
    Kaushal S; Schneider JW; Nadal-Ginard B; Mahdavi V
    Science; 1994 Nov; 266(5188):1236-40. PubMed ID: 7973707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.