These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9001388)

  • 1. Site-specific introduction of an electroactive label into a non-electroactive enzyme (beta-lactamase I).
    Di Gleria K; Halliwell CM; Jacob C; Hill HA
    FEBS Lett; 1997 Jan; 400(2):155-7. PubMed ID: 9001388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-(2-ferrocene-ethyl)maleimide: a new electroactive sulphydryl-specific reagent for cysteine-containing peptides and proteins.
    Di Gleria K; Hill HA; Wong LL
    FEBS Lett; 1996 Jul; 390(2):142-4. PubMed ID: 8706845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopenicillanic acid: kinetics.
    Loosemore MJ; Cohen SA; Pratt RF
    Biochemistry; 1980 Aug; 19(17):3990-5. PubMed ID: 6250581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteinyl peptide inhibitors of Bacillus cereus zinc beta-lactamase.
    Bounaga S; Galleni M; Laws AP; Page MI
    Bioorg Med Chem; 2001 Feb; 9(2):503-10. PubMed ID: 11249142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. beta-lactamase I from Bacillus cereus. Structure and site-directed mutagenesis.
    Madgwick PJ; Waley SG
    Biochem J; 1987 Dec; 248(3):657-62. PubMed ID: 3124817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the non-conserved residue at position 104 of class A beta-lactamases in susceptibility to mechanism-based inhibitors.
    Guo F; Huynh J; Dmitrienko GI; Viswanatha T; Clarke AJ
    Biochim Biophys Acta; 1999 Apr; 1431(1):132-47. PubMed ID: 10209286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of inactivation of beta-lactamase I by 6 beta-bromopenicillanic acid.
    Knott-Hunziker V; Orlek BS; Sammes PG; Waley SG
    Biochem J; 1980 Jun; 187(3):797-802. PubMed ID: 6331385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of cysteine 126 in the human liver UDP-glucuronosyltransferase UGT1A6.
    Senay C; Jedlitschky G; Terrier N; Burchell B; Magdalou J; Fournel-Gigleux S
    Biochim Biophys Acta; 2002 May; 1597(1):90-6. PubMed ID: 12009407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific chemical modification of the readily nitrated tyrosine of the RTEM beta-lactamase and of bacillus cereus beta-lactamase I. The role of the tyrosine in beta-lactamase catalysis.
    Wolozin BL; Myerowitz R; Pratt RF
    Biochim Biophys Acta; 1982 Feb; 701(2):153-63. PubMed ID: 6803835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of Bacillus cereus 569/H beta-lactamase I by 6-beta-(trifluoromethane sulfonyl)amidopenicillanic acid sulfone and its N-methyl derivative.
    Clarke AJ; Mezes PS; Vice SF; Dmitrienko GI; Viswanatha T
    Biochim Biophys Acta; 1983 Nov; 748(3):389-97. PubMed ID: 6315063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of cysteine-containing proteins using precolumn derivatization with N-(2-ferroceneethyl)maleimide and liquid chromatography/electrochemistry/mass spectrometry.
    Seiwert B; Karst U
    Anal Bioanal Chem; 2007 Aug; 388(8):1633-42. PubMed ID: 17437089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of beta-lactamase I: role of Glu-166.
    Leung YC; Robinson CV; Aplin RT; Waley SG
    Biochem J; 1994 May; 299 ( Pt 3)(Pt 3):671-8. PubMed ID: 7910734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inactivation of Bacillus cereus 569/H bera-lactamase by 6-beta-(trifluoromethane-sulfonyl)amidopenicillanic acid sulfone: pH dependence and stoichiometry.
    Mezes PS; Clarke AJ; Dmitrienko GI; Viswanatha T
    J Antibiot (Tokyo); 1982 Jul; 35(7):918-20. PubMed ID: 6294040
    [No Abstract]   [Full Text] [Related]  

  • 14. A kinetic study of NMC-A beta-lactamase, an Ambler class A carbapenemase also hydrolyzing cephamycins.
    Mariotte-Boyer S; Nicolas-Chanoine MH; Labia R
    FEMS Microbiol Lett; 1996 Sep; 143(1):29-33. PubMed ID: 8807798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 6-beta-bromopenicillanic acid, a potent beta-lactamase inhibitor.
    Pratt RF; Loosemore MJ
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4145-9. PubMed ID: 212736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus cereus 569/H penicillinase serine-44 acylation by diazotized 6-aminopenicillanic acid.
    Heckler TG; Day RA
    Biochim Biophys Acta; 1983 Jun; 745(3):292-300. PubMed ID: 6305423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the chemistry of beta-lactamase inhibition by 6 beta-bromopenicillanic acid.
    Orlek BS; Sammes PG; Knott-Hunziker V; Waley SG
    J Chem Soc Perkin 1; 1980; 10():2322-9. PubMed ID: 6253512
    [No Abstract]   [Full Text] [Related]  

  • 18. Inactivation of beta-lactamase from Shigella flexneri UCSF-129 by 6-beta-iodopenicillanic acid: classification of the enzyme.
    Campos M; Alarcón M; González H
    Microbios; 1990; 63(254):29-35. PubMed ID: 2170824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ; Quinn GB; Smith ET; Barber MJ
    Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative in-vitro activities of GD-40 and other beta-lactamase inhibitors against TEM-1 and SHV-2 beta-lactamases.
    Danelon G; Mascaretti O; Radice M; Power P; Calcagno ML; Mata EG; Gutkind G
    J Antimicrob Chemother; 1998 Feb; 41(2):313-5. PubMed ID: 9533481
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.