These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9001936)

  • 1. Scanning electron microscopy of human cortical bone failure surfaces.
    Braidotti P; Branca FP; Stagni L
    J Biomech; 1997 Feb; 30(2):155-62. PubMed ID: 9001936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensile experiments and SEM fractography on bovine subchondral bone.
    Braidotti P; Bemporad E; D'Alessio T; Sciuto SA; Stagni L
    J Biomech; 2000 Sep; 33(9):1153-7. PubMed ID: 10854890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture of human femoral bone.
    Moyle DD; Bowden RW
    J Biomech; 1984; 17(3):203-13. PubMed ID: 6736057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relations between tensile impact properties and microstructure of compact bone.
    Saha S; Hayes WC
    Calcif Tissue Res; 1977 Dec; 24(1):65-72. PubMed ID: 597746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of stress ratio on the fatigue behaviour of compact bone.
    Ota M; Ishihara S; Fleck C; Goshima T; Eifler D
    Proc Inst Mech Eng H; 2005; 219(1):13-22. PubMed ID: 15777053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation dependence of the fracture mechanics of cortical bone.
    Behiri JC; Bonfield W
    J Biomech; 1989; 22(8-9):863-72. PubMed ID: 2613722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile damage and its effects on cortical bone.
    Kotha SP; Guzelsu N
    J Biomech; 2003 Nov; 36(11):1683-9. PubMed ID: 14522210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micromechanics of bone strength and fracture.
    Mammone JF; Hudson SM
    J Biomech; 1993; 26(4-5):439-46. PubMed ID: 8386727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution, development and morphology of microcracking in cortical bone during crack propagation.
    Vashishth D; Tanner KE; Bonfield W
    J Biomech; 2000 Sep; 33(9):1169-74. PubMed ID: 10854892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demineralized bone matrix as a template for mineral--organic composites.
    Walsh WR; Christiansen DL
    Biomaterials; 1995 Dec; 16(18):1363-71. PubMed ID: 8590762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equine cortical bone exhibits rising R-curve fracture mechanics.
    Malik CL; Stover SM; Martin RB; Gibeling JC
    J Biomech; 2003 Feb; 36(2):191-8. PubMed ID: 12547356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the fatigue behavior of human trabecular and cortical bone tissue.
    Choi K; Goldstein SA
    J Biomech; 1992 Dec; 25(12):1371-81. PubMed ID: 1491015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength and mode of failure of unidirectional and bidirectional glass fiber-reinforced composite materials.
    Chong KH; Chai J
    Int J Prosthodont; 2003; 16(2):161-6. PubMed ID: 12737248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue data analysis of canine femurs under four-point bending.
    Pidaparti RM; Akyuz U; Naick PA; Burr DB
    Biomed Mater Eng; 2000; 10(1):43-50. PubMed ID: 10950206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.
    Bagheri ZS; El Sawi I; Schemitsch EH; Zdero R; Bougherara H
    J Mech Behav Biomed Mater; 2013 Apr; 20():398-406. PubMed ID: 23499250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic fracture aspects of impact tested human bones.
    Ducheyne P; Martens M; De Meester P; Aernoudt E; Vrancken M; Van Hulle F; Mulier JC
    J Bioeng; 1977 Aug; 1(3):197-207. PubMed ID: 615880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.