These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9001941)

  • 1. Statically equivalent load and support conditions produce different hip joint contact pressures and periacetabular strains.
    Bay BK; Hamel AJ; Olson SA; Sharkey NA
    J Biomech; 1997 Feb; 30(2):193-6. PubMed ID: 9001941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of acetabular rim trimming on hip joint contact pressures: how much is too much?
    Bhatia S; Lee S; Shewman E; Mather RC; Salata MJ; Bush-Joseph CA; Nho SJ
    Am J Sports Med; 2015 Sep; 43(9):2138-45. PubMed ID: 26180260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical strains passing through the acetabular labrum modify its shape during hip motion: an anatomical study.
    Ollivier M; Le Corroller T; Parratte S; Chabrand P; Argenson JN; Gagey O
    Knee Surg Sports Traumatol Arthrosc; 2017 Jun; 25(6):1967-1974. PubMed ID: 28314887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact pressures in the flexed hip joint during lateral trochanteric loading.
    Sparks DR; Beason DP; Etheridge BS; Alonso JE; Eberhardt AW
    J Orthop Res; 2005 Mar; 23(2):359-66. PubMed ID: 15734249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of variable size posterior wall acetabular fractures on contact characteristics of the hip joint.
    Olson SA; Bay BK; Pollak AN; Sharkey NA; Lee T
    J Orthop Trauma; 1996; 10(6):395-402. PubMed ID: 8854317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact finite element stress analysis of the hip joint.
    Rapperport DJ; Carter DR; Schurman DJ
    J Orthop Res; 1985; 3(4):435-46. PubMed ID: 4067702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the acetabular labrum and the transverse acetabular ligament in load transmission in the hip.
    Konrath GA; Hamel AJ; Olson SA; Bay B; Sharkey NA
    J Bone Joint Surg Am; 1998 Dec; 80(12):1781-8. PubMed ID: 9875936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical pelvic strains with varying size hemiarthroplasty in vitro.
    Ries M; Pugh J; Au JC; Gurtowski J; Dee R
    J Biomech; 1989; 22(8-9):775-80. PubMed ID: 2613712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical and biomechanical investigations of the iliotibial tract.
    Birnbaum K; Siebert CH; Pandorf T; Schopphoff E; Prescher A; Niethard FU
    Surg Radiol Anat; 2004 Dec; 26(6):433-46. PubMed ID: 15378277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new sensor for measurement of dynamic contact stress in the hip.
    Rudert MJ; Ellis BJ; Henak CR; Stroud NJ; Pederson DR; Weiss JA; Brown TD
    J Biomech Eng; 2014 Mar; 136(3):035001. PubMed ID: 24763632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cadaver study of acetabular cup mobility in the healthy hip and prosthesis by monopodal pressure simulation ].
    Vandenbussche E; Massin P; Augereau B; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 1999 May; 85(2):136-45. PubMed ID: 10392414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical evaluation of a low anterior wall fracture: correlation with the CT subchondral arc.
    Konrath GA; Hamel AJ; Sharkey NA; Bay B; Olson SA
    J Orthop Trauma; 1998; 12(3):152-8. PubMed ID: 9553854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of transverse acetabular fracture malreduction on load transmission across the hip joint.
    Hak DJ; Hamel AJ; Bay BK; Sharkey NA; Olson SA
    J Orthop Trauma; 1998 Feb; 12(2):90-100. PubMed ID: 9503297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact pressures in the loaded human cadaver hip.
    Day WH; Swanson SA; Freeman MA
    J Bone Joint Surg Br; 1975 Aug; 57(3):302-13. PubMed ID: 1158942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of femur/acetabulum cartilage in the biomechanics of the intact hip: experimental and numerical assessment.
    Duarte RJ; Ramos A; Completo A; Relvas C; Simões JA
    Comput Methods Biomech Biomed Engin; 2015; 18(8):880-9. PubMed ID: 24261321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental method for investigating load distribution in the cadaveric human hip.
    Mizrahi J; Solomon L; Kaufman B; Duggan TO
    J Bone Joint Surg Br; 1981; 63B(4):610-3. PubMed ID: 7298695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cementless socket fixation based on the "press-fit" concept in total hip joint arthroplasty].
    Morscher EW; Widmer KH; Bereiter H; Elke R; Schenk R
    Acta Chir Orthop Traumatol Cech; 2002; 69(1):8-15. PubMed ID: 11951572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of acetabular labrum tears on hip stability and labral strain in a joint compression model.
    Smith MV; Panchal HB; Ruberte Thiele RA; Sekiya JK
    Am J Sports Med; 2011 Jul; 39 Suppl():103S-10S. PubMed ID: 21709039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain.
    Ghosh R; Pal B; Ghosh D; Gupta S
    Comput Methods Biomech Biomed Engin; 2015; 18(7):697-710. PubMed ID: 24156480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Bernese periacetabular osteotomy: prospective studies examining projected load-bearing area, bone density, cartilage thickness and migration.
    Mechlenburg I
    Acta Orthop Suppl; 2008 Jun; 79(329):4-43. PubMed ID: 18853289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.