BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 9001942)

  • 1. Numerical conversion of transient to harmonic response functions for linear viscoelastic materials.
    Buschmann MD
    J Biomech; 1997 Feb; 30(2):197-202. PubMed ID: 9001942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis.
    Bursać PM; Obitz TW; Eisenberg SR; Stamenović D
    J Biomech; 1999 Oct; 32(10):1125-30. PubMed ID: 10476852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of a relaxation test designed to fit a quasi-linear viscoelastic model for temporomandibular joint discs.
    Commisso MS; Martínez-Reina J; Mayo J; Domínguez J
    Proc Inst Mech Eng H; 2013 Feb; 227(2):190-9. PubMed ID: 23513990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear stress relaxation of dental ceramics determined from creep behavior.
    DeHoff PH; Anusavice KJ
    Dent Mater; 2004 Oct; 20(8):717-25. PubMed ID: 15302452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments.
    Ateshian GA; Warden WH; Kim JJ; Grelsamer RP; Mow VC
    J Biomech; 1997; 30(11-12):1157-64. PubMed ID: 9456384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrelation of creep and relaxation: a modeling approach for ligaments.
    Lakes RS; Vanderby R
    J Biomech Eng; 1999 Dec; 121(6):612-5. PubMed ID: 10633261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear viscoelastic characterization of bovine trabecular bone.
    Manda K; Wallace RJ; Xie S; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2017 Feb; 16(1):173-189. PubMed ID: 27440127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Combined Exponential-Power-Law Method for Interconversion between Viscoelastic Functions of Polymers and Polymer-Based Materials.
    Dacol V; Caetano E; Correia JR
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33339250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.
    Liu K; Ovaert TC
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):440-50. PubMed ID: 21316632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Elementary Formula for the Initial Relaxation Modulus from the Creep Compliance for Asphalt Mixtures.
    Chen S; Chen B; Wu X; Zhou J
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elasticity imaging of polymeric media.
    Sridhar M; Liu J; Insana MF
    J Biomech Eng; 2007 Apr; 129(2):259-72. PubMed ID: 17408331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.