These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9002245)

  • 1. Natural products derived from plants as potential drugs for the photodynamic destruction of tumor cells.
    Ebermann R; Alth G; Kreitner M; Kubin A
    J Photochem Photobiol B; 1996 Nov; 36(2):95-7. PubMed ID: 9002245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virus-Based Cancer Therapeutics for Targeted Photodynamic Therapy.
    Cao B; Xu H; Yang M; Mao C
    Methods Mol Biol; 2018; 1776():643-652. PubMed ID: 29869271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypericin activated by an incoherent light source has photodynamic effects on esophageal cancer cells.
    Höpfner M; Maaser K; Theiss A; Lenz M; Sutter AP; Kashtan H; von Lampe B; Riecken EO; Zeitz M; Scherübl H
    Int J Colorectal Dis; 2003 May; 18(3):239-47. PubMed ID: 12673490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of a chlorophyll derivative and investigation of its photodynamic activities against cholangiocarcinoma.
    Wu ZM; Wang L; Zhu W; Gao YH; Wu HM; Wang M; Hu TS; Yan YJ; Chen ZL
    Biomed Pharmacother; 2017 Aug; 92():285-292. PubMed ID: 28551549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular mechanisms and prospective applications of hypericin in photodynamic therapy.
    Kiesslich T; Krammer B; Plaetzer K
    Curr Med Chem; 2006; 13(18):2189-204. PubMed ID: 16918348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts.
    Sytar O; Švedienė J; Ložienė K; Paškevičius A; Kosyan A; Taran N
    Pharm Biol; 2016 Dec; 54(12):3121-3125. PubMed ID: 27564138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomedical Platform Development of a Chlorophyll-Based Extract for Topic Photodynamic Therapy: Mechanical and Spectroscopic Properties.
    Campanholi KDSS; Braga G; da Silva JB; da Rocha NL; de Francisco LMB; de Oliveira ÉL; Bruschi ML; de Castro-Hoshino LV; Sato F; Hioka N; Caetano W
    Langmuir; 2018 Jul; 34(28):8230-8244. PubMed ID: 29933698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods.
    Rajendran M
    Photodiagnosis Photodyn Ther; 2016 Mar; 13():175-187. PubMed ID: 26241780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the mode of action for thiophene-based organic D-π-A sensitizers for use in photodynamic therapy.
    Fuse S; Takizawa M; Sato S; Okazaki S; Nakamura H
    Bioorg Med Chem; 2019 Jan; 27(2):315-321. PubMed ID: 30554971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy.
    Roy I; Ohulchanskyy TY; Pudavar HE; Bergey EJ; Oseroff AR; Morgan J; Dougherty TJ; Prasad PN
    J Am Chem Soc; 2003 Jul; 125(26):7860-5. PubMed ID: 12823004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, analysis and structures of phototoxic fagopyrins from buckwheat.
    Tavčar Benković E; Žigon D; Friedrich M; Plavec J; Kreft S
    Food Chem; 2014 Jan; 143():432-9. PubMed ID: 24054263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentially useful antimicrobial and antiviral phototoxins from plants.
    Towers GH; Hudson JB
    Photochem Photobiol; 1987 Jul; 46(1):61-6. PubMed ID: 3615635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodynamic action of palmatine hydrochloride on colon adenocarcinoma HT-29 cells.
    Wu J; Xiao Q; Zhang N; Xue C; Leung AW; Zhang H; Xu C; Tang QJ
    Photodiagnosis Photodyn Ther; 2016 Sep; 15():53-8. PubMed ID: 27181460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity of G-ROS and the predominant role of Type II reaction in the photodynamic therapy using 9-hydroxypheophorbide-α for HeLa cell lines.
    Ahn JC; Chung PS
    Gen Physiol Biophys; 2012 Sep; 31(3):343-50. PubMed ID: 23047947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperflav - perspective photosensitizer for PDT: cell studies.
    Yermak PV; Gamaleia NF; Shalamay AS; Saienko TV; Kholin VV
    Exp Oncol; 2010 Dec; 32(4):233-6. PubMed ID: 21270750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodynamic efficiency of a chlorophyll-a derivative in vitro and in vivo.
    Zhang XH; Zhang LJ; Sun JJ; Yan YJ; Zhang LX; Chen N; Chen ZL
    Biomed Pharmacother; 2016 Jul; 81():265-272. PubMed ID: 27261603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of Fagopyrin Formation In Vitro by UV Spectroscopic Analysis.
    Kosyan A; Sytar O
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33916126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysical properties of Hypericum perforatum L. extracts--novel photosensitizers for PDT.
    Skalkos D; Gioti E; Stalikas CD; Meyer H; Papazoglou TG; Filippidis G
    J Photochem Photobiol B; 2006 Feb; 82(2):146-51. PubMed ID: 16388961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc-pheophorbide a-highly efficient low-cost photosensitizer against human adenocarcinoma in cellular and animal models.
    Jakubowska M; Szczygieł M; Michalczyk-Wetula D; Susz A; Stochel G; Elas M; Fiedor L; Urbanska K
    Photodiagnosis Photodyn Ther; 2013 Sep; 10(3):266-77. PubMed ID: 23993853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosensitization with anticancer agents. 15. Perylenequinonoid pigments as potential photodynamic therapeutic agents: formation of semiquinone radicals and reactive oxygen species on illumination.
    Diwu Z; Lown JW
    J Photochem Photobiol B; 1993 May; 18(2-3):131-43. PubMed ID: 8394416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.