These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9002621)

  • 1. Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression.
    Cluster PD; O'Dell M; Metzlaff M; Flavell RB
    Plant Mol Biol; 1996 Dec; 32(6):1197-203. PubMed ID: 9002621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome.
    Zhang J; Cai L; Cheng J; Mao H; Fan X; Meng Z; Chan KM; Zhang H; Qi J; Ji L; Hong Y
    Transgenic Res; 2008 Apr; 17(2):293-306. PubMed ID: 17549600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences.
    Jorgensen RA; Cluster PD; English J; Que Q; Napoli CA
    Plant Mol Biol; 1996 Aug; 31(5):957-73. PubMed ID: 8843939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High frequency of single-copy T-DNA transformants produced by floral dip in CRE-expressing Arabidopsis plants.
    De Paepe A; De Buck S; Hoorelbeke K; Nolf J; Peck I; Depicker A
    Plant J; 2009 Aug; 59(4):517-27. PubMed ID: 19392707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations.
    Afolabi AS; Worland B; Snape JW; Vain P
    Theor Appl Genet; 2004 Aug; 109(4):815-26. PubMed ID: 15340691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgene inactivation in Petunia hybrida is influenced by the properties of the foreign gene.
    Elomaa P; Helariutta Y; Griesbach RJ; Kotilainen M; Seppänen P; Teeri TH
    Mol Gen Genet; 1995 Oct; 248(6):649-56. PubMed ID: 7476867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions.
    Krizkova L; Hrouda M
    Plant J; 1998 Dec; 16(6):673-80. PubMed ID: 10069074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs.
    Grevelding C; Fantes V; Kemper E; Schell J; Masterson R
    Plant Mol Biol; 1993 Nov; 23(4):847-60. PubMed ID: 8251637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell.
    De Buck S; Podevin N; Nolf J; Jacobs A; Depicker A
    Plant J; 2009 Oct; 60(1):134-45. PubMed ID: 19508426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High frequency of single-copy T-DNA transformants produced after floral dip in CRE-expressing Arabidopsis plants.
    De Paepe A; De Buck S; Nolf J; Depicker A
    Methods Mol Biol; 2012; 847():317-33. PubMed ID: 22351019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing.
    Meza TJ; Stangeland B; Mercy IS; Skårn M; Nymoen DA; Berg A; Butenko MA; Håkelien AM; Haslekås C; Meza-Zepeda LA; Aalen RB
    Nucleic Acids Res; 2002 Oct; 30(20):4556-66. PubMed ID: 12384603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plant transformation vector with a minimal T-DNA II. Irregular integration patterns of the T-DNA in the plant genome.
    Porsch P; Jahnke A; Düring K
    Plant Mol Biol; 1998 Jun; 37(3):581-5. PubMed ID: 9617825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs.
    De Neve M; De Buck S; Jacobs A; Van Montagu M; Depicker A
    Plant J; 1997 Jan; 11(1):15-29. PubMed ID: 9025300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation.
    Renckens S; De Greve H; Van Montagu M; Hernalsteens JP
    Mol Gen Genet; 1992 May; 233(1-2):53-64. PubMed ID: 1376407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions.
    Fobert PR; Miki BL; Iyer VN
    Plant Mol Biol; 1991 Oct; 17(4):837-51. PubMed ID: 1655114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize.
    Sivamani E; Li X; Nalapalli S; Barron Y; Prairie A; Bradley D; Doyle M; Que Q
    Transgenic Res; 2015 Dec; 24(6):1017-27. PubMed ID: 26338266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure.
    Fladung M
    Mol Gen Genet; 1999 Jan; 260(6):574-81. PubMed ID: 9928937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgene structures in T-DNA-inserted rice plants.
    Kim SR; Lee J; Jun SH; Park S; Kang HG; Kwon S; An G
    Plant Mol Biol; 2003 Jul; 52(4):761-73. PubMed ID: 13677465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of T-DNA- Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice.
    Zhai W; Chen C; Zhu X; Chen X; Zhang D; Li X; Zhu L
    Theor Appl Genet; 2004 Aug; 109(3):534-42. PubMed ID: 15088086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants.
    van der Graaff E; den Dulk-Ras A; Hooykaas PJ
    Plant Mol Biol; 1996 Jun; 31(3):677-81. PubMed ID: 8790299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.