These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9002948)

  • 1. The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood.
    Uchida N; He D; Friera AM; Reitsma M; Sasaki D; Chen B; Tsukamoto A
    Blood; 1997 Jan; 89(2):465-72. PubMed ID: 9002948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle.
    Wright DE; Cheshier SH; Wagers AJ; Randall TD; Christensen JL; Weissman IL
    Blood; 2001 Apr; 97(8):2278-85. PubMed ID: 11290588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cycling status of CD34+ cells mobilized into peripheral blood of healthy donors by recombinant human granulocyte colony-stimulating factor.
    Lemoli RM; Tafuri A; Fortuna A; Petrucci MT; Ricciardi MR; Catani L; Rondelli D; Fogli M; Leopardi G; Ariola C; Tura S
    Blood; 1997 Feb; 89(4):1189-96. PubMed ID: 9028941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization.
    Morrison SJ; Wright DE; Weissman IL
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1908-13. PubMed ID: 9050878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in integrin expression are associated with altered homing properties of Lin(-/lo)Thy1.1(lo)Sca-1(+)c-kit(+) hematopoietic stem cells following mobilization by cyclophosphamide/granulocyte colony-stimulating factor.
    Wagers AJ; Allsopp RC; Weissman IL
    Exp Hematol; 2002 Feb; 30(2):176-85. PubMed ID: 11823053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytokine-mobilized peripheral blood CD34+Thy-1+Lin- human hematopoietic stem cells as target cells for transplantation-based gene therapy.
    Chen BP; Fraser C; Reading C; Murray L; Uchida N; Galy A; Sasaki D; Tricot G; Jagannath S; Barlogie B
    Leukemia; 1995 Oct; 9 Suppl 1():S17-25. PubMed ID: 7475307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological characterization of CD34+ cells mobilized into peripheral blood.
    Lemoli RM; Tafuri A; Fortuna A; Catani L; Rondelli D; Ratta M; Tura S
    Bone Marrow Transplant; 1998 Dec; 22 Suppl 5():S47-50. PubMed ID: 9989890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin- subpopulation from mobilized peripheral blood.
    Murray L; Chen B; Galy A; Chen S; Tushinski R; Uchida N; Negrin R; Tricot G; Jagannath S; Vesole D
    Blood; 1995 Jan; 85(2):368-78. PubMed ID: 7529060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leukemic burden in subpopulations of CD34+ cells isolated from the mobilized peripheral blood of alpha-interferon-resistant or -intolerant patients with chronic myeloid leukemia.
    Van den Berg D; Wessman M; Murray L; Tong J; Chen B; Chen S; Simonetti D; King J; Yamasaki G; DiGiusto R; Gearing D; Reading C
    Blood; 1996 May; 87(10):4348-57. PubMed ID: 8639795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of the phenotype and proliferative capacity of peripheral blood (PB) CD34+ cells mobilized by four different protocols and those of steady-phase PB and bone marrow CD34+ cells.
    To LB; Haylock DN; Dowse T; Simmons PJ; Trimboli S; Ashman LK; Juttner CA
    Blood; 1994 Nov; 84(9):2930-9. PubMed ID: 7524760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and sustained hematopoietic recovery in lethally irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ hematopoietic stem cells.
    Uchida N; Aguila HL; Fleming WH; Jerabek L; Weissman IL
    Blood; 1994 Jun; 83(12):3758-79. PubMed ID: 7911343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice.
    Gothot A; van der Loo JC; Clapp DW; Srour EF
    Blood; 1998 Oct; 92(8):2641-9. PubMed ID: 9763545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral blood CD34+ cells differ from bone marrow CD34+ cells in Thy-1 expression and cell cycle status in nonhuman primates mobilized or not mobilized with granulocyte colony-stimulating factor and/or stem cell factor.
    Donahue RE; Kirby MR; Metzger ME; Agricola BA; Sellers SE; Cullis HM
    Blood; 1996 Feb; 87(4):1644-53. PubMed ID: 8608259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic and proteomic analysis of the impact of mitotic quiescence on the engraftment of human CD34+ cells.
    Chitteti BR; Liu Y; Srour EF
    PLoS One; 2011 Mar; 6(3):e17498. PubMed ID: 21408179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The low cycling status of mobilized peripheral blood CD34+ cells is not restricted to the more primitive subfraction.
    Croockewit AJ; Raymakers RA; Smeets ME; vd Bosch G; Pennings AH; de Witte TJ
    Leukemia; 1998 Apr; 12(4):571-7. PubMed ID: 9557616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0 /G1 phase of the cell cycle.
    Gothot A; Pyatt R; McMahel J; Rice S; Srour EF
    Blood; 1997 Dec; 90(11):4384-93. PubMed ID: 9373249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of human hematopoietic repopulating cells mobilized with granulocyte colony-stimulating factor alone versus granulocyte colony-stimulating factor in combination with stem cell factor.
    Hess DA; Levac KD; Karanu FN; Rosu-Myles M; White MJ; Gallacher L; Murdoch B; Keeney M; Ottowski P; Foley R; Chin-Yee I; Bhatia M
    Blood; 2002 Aug; 100(3):869-78. PubMed ID: 12130497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of granulocyte colony-stimulating factor in mobilization and transplantation of peripheral blood progenitor and stem cells .
    Haas R; Murea S
    Cytokines Mol Ther; 1995 Dec; 1(4):249-70. PubMed ID: 9384679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fms-related tyrosine kinase 3 expression discriminates hematopoietic stem cells subpopulations with differing engraftment-potential: identifying the most potent combination.
    Huang Y; Ratajczak MZ; Reca R; Xu H; Tanner M; Rezzoug F; Hussain LR; Fugier-Vivier I; Bolli R; Ildstad ST
    Transplantation; 2008 Apr; 85(8):1175-84. PubMed ID: 18431239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Granulocyte colony-stimulating factor mobilized peripheral blood stem cells enter into G1 of the cell cycle and express higher levels of amphotropic retrovirus receptor mRNA.
    Horwitz ME; Malech HL; Anderson SM; Girard LJ; Bodine DM; Orlic D
    Exp Hematol; 1999 Jul; 27(7):1160-7. PubMed ID: 10390191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.