These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9003436)

  • 61. Transmission electron microscopy of GroEL, GroES, and the symmetrical GroEL/ES complex.
    Harris JR; Plückthun A; Zahn R
    J Struct Biol; 1994; 112(3):216-30. PubMed ID: 7986648
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Expansion and compression of a protein folding intermediate by GroEL.
    Lin Z; Rye HS
    Mol Cell; 2004 Oct; 16(1):23-34. PubMed ID: 15469819
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions.
    Behlke J; Ristau O; Schönfeld HJ
    Biochemistry; 1997 Apr; 36(17):5149-56. PubMed ID: 9136876
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Location and flexibility of the unique C-terminal tail of Aquifex aeolicus co-chaperonin protein 10 as derived by cryo-electron microscopy and biophysical techniques.
    Chen DH; Luke K; Zhang J; Chiu W; Wittung-Stafshede P
    J Mol Biol; 2008 Sep; 381(3):707-17. PubMed ID: 18588898
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The disordered mobile loop of GroES folds into a defined beta-hairpin upon binding GroEL.
    Shewmaker F; Maskos K; Simmerling C; Landry SJ
    J Biol Chem; 2001 Aug; 276(33):31257-64. PubMed ID: 11395498
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding.
    Hlodan R; Tempst P; Hartl FU
    Nat Struct Biol; 1995 Jul; 2(7):587-95. PubMed ID: 7664127
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Active rhodanese lacking nonessential sulfhydryl groups contains an unstable C-terminal domain and can be bound, inactivated, and reactivated by GroEL.
    Ybarra J; Bhattacharyya AM; Panda M; Horowitz PM
    J Biol Chem; 2003 Jan; 278(3):1693-9. PubMed ID: 12433928
    [TBL] [Abstract][Full Text] [Related]  

  • 68. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions.
    Trevino RJ; Gliubich F; Berni R; Cianci M; Chirgwin JM; Zanotti G; Horowitz PM
    J Biol Chem; 1999 May; 274(20):13938-47. PubMed ID: 10318804
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Monomer-heptamer equilibrium of the Escherichia coli chaperonin GroES.
    Zondlo J; Fisher KE; Lin Z; Ducote KR; Eisenstein E
    Biochemistry; 1995 Aug; 34(33):10334-9. PubMed ID: 7654686
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High resolution surface structure of E. coli GroES oligomer by atomic force microscopy.
    Mou J; Czajkowsky DM; Sheng SJ; Ho R; Shao Z
    FEBS Lett; 1996 Feb; 381(1-2):161-4. PubMed ID: 8641429
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Topographic studies of the GroEL-GroES chaperonin complex by chemical cross-linking using diformyl ethynylbenzene: the power of high resolution electron transfer dissociation for determination of both peptide sequences and their attachment sites.
    Trnka MJ; Burlingame AL
    Mol Cell Proteomics; 2010 Oct; 9(10):2306-17. PubMed ID: 20813910
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Lord of the rings: GroES structure.
    Mayhew M; Hartl FU
    Science; 1996 Jan; 271(5246):161-2. PubMed ID: 8539614
    [No Abstract]   [Full Text] [Related]  

  • 73. Cloning and transcriptional analysis of groES and groEL in ethanol-producing bacterium Zymomonas mobilis TISTR 548.
    Thanonkeo P; Sootsuwan K; Leelavacharamas V; Yamada M
    Pak J Biol Sci; 2007 Jan; 10(1):13-22. PubMed ID: 19069981
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Photoincorporation of 4,4'-bis(1-anilino-8-naphthalenesulfonic acid) into the apical domain of GroEL: specific information from a nonspecific probe.
    Seale JW; Martinez JL; Horowitz PM
    Biochemistry; 1995 Jun; 34(22):7443-9. PubMed ID: 7779787
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modulation of dimerization by residues distant from the interface in bovine neurophysin-II.
    Zheng C; Peyton D; Breslow E
    J Pept Res; 1997 Sep; 50(3):199-209. PubMed ID: 9309584
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer.
    Horowitz PM; Hua S; Gibbons DL
    J Biol Chem; 1995 Jan; 270(4):1535-42. PubMed ID: 7829481
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: insight into intrinsically disordered proteins.
    Iwasa H; Meshitsuka S; Hongo K; Mizobata T; Kawata Y
    J Biol Chem; 2011 Jun; 286(24):21796-805. PubMed ID: 21507961
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models.
    Na H; Jernigan RL; Song G
    PLoS Comput Biol; 2015 Oct; 11(10):e1004542. PubMed ID: 26473491
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Perturbation-based Markovian transmission model for probing allosteric dynamics of large macromolecular assembling: a study of GroEL-GroES.
    Lu HM; Liang J
    PLoS Comput Biol; 2009 Oct; 5(10):e1000526. PubMed ID: 19798437
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prying open single GroES ring complexes by force reveals cooperativity across domains.
    Ikeda-Kobayashi A; Taniguchi Y; Brockwell DJ; Paci E; Kawakami M
    Biophys J; 2012 Apr; 102(8):1961-8. PubMed ID: 22768953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.