BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9003462)

  • 1. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of EMS induced splicing defective point mutations within the intron of the nrdB gene of bacteriophage T4.
    Khan AU; Lal SK; Ahmad M
    Biochem Biophys Res Commun; 1998 Jan; 242(1):10-5. PubMed ID: 9439601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach for isolation and mapping of intron mutations in a ribonucleotide reductase encoding gene (nrdB) of bacteriophage T4 using the white halo plaque phenotype.
    Lal SK; Hall DH
    Biochem Biophys Res Commun; 1993 Oct; 196(2):943-9. PubMed ID: 8240371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of mRNA splicing by a second-site intragenic suppressor in the T4 ribonucleotide reductase (small subunit) self-splicing intron.
    Khan AU; Ahmad M; Lal SK
    Biochem Biophys Res Commun; 2000 Feb; 268(2):359-64. PubMed ID: 10679208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-directed, hydroxylamine-generated suppressor mutation in the P3 pairing region of the bacteriophage T4 td intron partially restores self-splicing capability.
    Brown MD; DeYoung KL; Hall DH
    Mol Microbiol; 1994 Jul; 13(1):89-95. PubMed ID: 7984096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bacteriophage T4 gene for the small subunit of ribonucleotide reductase contains an intron.
    Sjöberg BM; Hahne S; Mathews CZ; Mathews CK; Rand KN; Gait MJ
    EMBO J; 1986 Aug; 5(8):2031-6. PubMed ID: 3530746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.
    Sandegren L; Sjöberg BM
    J Bacteriol; 2007 Feb; 189(3):980-90. PubMed ID: 17122344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous shuffling of domains between introns of phage T4.
    Bryk M; Belfort M
    Nature; 1990 Jul; 346(6282):394-6. PubMed ID: 2197562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phage T4 nrdB intron: a deletion mutant of a version found in the wild.
    Eddy SR; Gold L
    Genes Dev; 1991 Jun; 5(6):1032-41. PubMed ID: 2044951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique group of self-splicing introns in bacteriophage T4.
    Khan AU; Ajamaluddin M; Ahmad M
    Indian J Biochem Biophys; 2001 Oct; 38(5):289-93. PubMed ID: 11886074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and characterization of mutations induced by nitrous acid or hydroxylamine in the intron-containing thymidylate synthase gene of bacteriophage T4.
    Brown MD; Povinelli CM; Hall DH
    Biochem Genet; 1993 Dec; 31(11-12):507-20. PubMed ID: 8166624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrupted thymidylate synthase gene of bacteriophages T2 and T6 and other potential self-splicing introns in the T-even bacteriophages.
    Chu FK; Maley F; Martinez J; Maley GF
    J Bacteriol; 1987 Sep; 169(9):4368-75. PubMed ID: 2442142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of mobile group I introns: recognition of intron sequences by an intron-encoded endonuclease.
    Loizos N; Tillier ER; Belfort M
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):11983-7. PubMed ID: 7991569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence specificity of the P6 pairing for splicing of the group I td intron of phage T4.
    Ehrenman K; Schroeder R; Chandry PS; Hall DH; Belfort M
    Nucleic Acids Res; 1989 Nov; 17(22):9147-63. PubMed ID: 2685756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable occurrence of the nrdB intron in the T-even phages suggests intron mobility.
    Pedersen-Lane J; Belfort M
    Science; 1987 Jul; 237(4811):182-4. PubMed ID: 3037701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inconsistent distribution of introns in the T-even phages indicates recent genetic exchanges.
    Quirk SM; Bell-Pedersen D; Tomaschewski J; Rüger W; Belfort M
    Nucleic Acids Res; 1989 Jan; 17(1):301-15. PubMed ID: 2643081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of tyrosyl-tRNA synthetase in splicing group I introns: an induced-fit model for binding to the P4-P6 domain based on analysis of mutations at the junction of the P4-P6 stacked helices.
    Chen X; Gutell RR; Lambowitz AM
    J Mol Biol; 2000 Aug; 301(2):265-83. PubMed ID: 10926509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo.
    Waldsich C; Grossberger R; Schroeder R
    Genes Dev; 2002 Sep; 16(17):2300-12. PubMed ID: 12208852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteriophage T4 nrdA and nrdB genes, encoding ribonucleotide reductase, are expressed both separately and coordinately: characterization of the nrdB promoter.
    Tseng MJ; He P; Hilfinger JM; Greenberg GR
    J Bacteriol; 1990 Nov; 172(11):6323-32. PubMed ID: 2228963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.