BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9004120)

  • 1. Movements of vertebrae during manipulative thrusts to unembalmed human cadavers.
    Gál J; Herzog W; Kawchuk G; Conway PJ; Zhang YT
    J Manipulative Physiol Ther; 1997 Jan; 20(1):30-40. PubMed ID: 9004120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forces and relative vertebral movements during SMT to unembalmed post-rigor human cadavers: peculiarities associated with joint cavitation.
    Gál JM; Herzog W; Kawchuk GN; Conway PJ; Zhang YT
    J Manipulative Physiol Ther; 1995 Jan; 18(1):4-9. PubMed ID: 7706960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movements of vertebrae during manipulative thrusts to unembalmed human cadavers.
    Herzog W
    J Manipulative Physiol Ther; 1998 Jun; 21(5):373-4. PubMed ID: 9627871
    [No Abstract]   [Full Text] [Related]  

  • 4. Skin accelerometer displacement and relative bone movement of adjacent vertebrae in response to chiropractic percussion thrusts.
    Smith DB; Fuhr AW; Davis BP
    J Manipulative Physiol Ther; 1989 Feb; 12(1):26-37. PubMed ID: 2926284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movements of vertebrae during manipulative thrusts to unembalmed human cadavers.
    Colloca CJ; Fuhr AW
    J Manipulative Physiol Ther; 1998 Feb; 21(2):128-9. PubMed ID: 9502071
    [No Abstract]   [Full Text] [Related]  

  • 6. Neuromechanical characterization of in vivo lumbar spinal manipulation. Part I. Vertebral motion.
    Keller TS; Colloca CJ; Gunzburg R
    J Manipulative Physiol Ther; 2003; 26(9):567-78. PubMed ID: 14673406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional vertebral motions produced by mechanical force spinal manipulation.
    Keller TS; Colloca CJ; Moore RJ; Gunzburg R; Harrison DE; Harrison DD
    J Manipulative Physiol Ther; 2006; 29(6):425-36. PubMed ID: 16904488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness and neuromuscular reflex response of the human spine to posteroanterior manipulative thrusts in patients with low back pain.
    Colloca CJ; Keller TS
    J Manipulative Physiol Ther; 2001 Oct; 24(8):489-500. PubMed ID: 11677547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highlighting of intervertebral movements and variations of intradiskal pressure during lumbar spine manipulation: a feasibility study.
    Maigne JY; Guillon F
    J Manipulative Physiol Ther; 2000 Oct; 23(8):531-5. PubMed ID: 11050609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.
    McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional spinal coupling mechanics: Part I. A review of the literature.
    Harrison DE; Harrison DD; Troyanovich SJ
    J Manipulative Physiol Ther; 1998 Feb; 21(2):101-13. PubMed ID: 9502066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy.
    Phillips FM; Voronov LI; Gaitanis IN; Carandang G; Havey RM; Patwardhan AG
    Spine J; 2006; 6(6):714-22. PubMed ID: 17088203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cement augmentation and extension of posterior instrumentation on stabilization and adjacent level effects in the elderly spine.
    Tan JS; Singh S; Zhu QA; Dvorak MF; Fisher CG; Oxland TR
    Spine (Phila Pa 1976); 2008 Dec; 33(25):2728-40. PubMed ID: 19050578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws.
    Kuklo TR; Dmitriev AE; Cardoso MJ; Lehman RA; Erickson M; Gill NW
    Spine (Phila Pa 1976); 2008 Jul; 33(15):E482-7. PubMed ID: 18594445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cervical spine motion in manual versus Jackson table turning methods in a cadaveric global instability model.
    DiPaola MJ; DiPaola CP; Conrad BP; Horodyski M; Del Rossi G; Sawers A; Bloch D; Rechtine GR
    J Spinal Disord Tech; 2008 Jun; 21(4):273-80. PubMed ID: 18525488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of spinal tissues in resisting posteroanterior forces applied to the lumbar spine.
    Lee RY; Evans JH
    J Manipulative Physiol Ther; 2000 Oct; 23(8):551-6. PubMed ID: 11050612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurophysiologic response to intraoperative lumbosacral spinal manipulation.
    Colloca CJ; Keller TS; Gunzburg R; Vandeputte K; Fuhr AW
    J Manipulative Physiol Ther; 2000 Sep; 23(7):447-57. PubMed ID: 11004648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical evaluation of a new total posterior-element replacement system.
    Wilke HJ; Schmidt H; Werner K; Schmölz W; Drumm J
    Spine (Phila Pa 1976); 2006 Nov; 31(24):2790-6; discussion 2797. PubMed ID: 17108830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forces generated during spinal manipulative therapy of the cervical spine: a pilot study.
    Kawchuk GN; Herzog W; Hasler EM
    J Manipulative Physiol Ther; 1992 Jun; 15(5):275-8. PubMed ID: 1613409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical comparison of two-level cervical locking posterior screw/rod and hook/rod techniques.
    Espinoza-Larios A; Ames CP; Chamberlain RH; Sonntag VK; Dickman CA; Crawford NR
    Spine J; 2007; 7(2):194-204. PubMed ID: 17321969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.