These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9004320)

  • 1. A scaling analysis of measles epidemics in a small population.
    Rhodes CJ; Anderson RM
    Philos Trans R Soc Lond B Biol Sci; 1996 Dec; 351(1348):1679-88. PubMed ID: 9004320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power laws governing epidemics in isolated populations.
    Rhodes CJ; Anderson RM
    Nature; 1996 Jun; 381(6583):600-2. PubMed ID: 8637594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infectious disease mortality in two Outer Hebridean islands: 1. measles, pertussis and influenza.
    Clegg EJ
    Ann Hum Biol; 2003; 30(4):455-71. PubMed ID: 12881144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictability in a highly stochastic system: final size of measles epidemics in small populations.
    Caudron Q; Mahmud AS; Metcalf CJ; Gottfreðsson M; Viboud C; Cliff AD; Grenfell BT
    J R Soc Interface; 2015 Jan; 12(102):20141125. PubMed ID: 25411411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling properties of childhood infectious diseases epidemics before and after mass vaccination in Canada.
    Trottier H; Philippe P
    J Theor Biol; 2005 Aug; 235(3):326-37. PubMed ID: 15882695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence and dynamics in lattice models of epidemic spread.
    Rhodes CJ; Anderson RM
    J Theor Biol; 1996 May; 180(2):125-33. PubMed ID: 8763363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Space, persistence and dynamics of measles epidemics.
    Bolker B; Grenfell B
    Philos Trans R Soc Lond B Biol Sci; 1995 May; 348(1325):309-20. PubMed ID: 8577828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemiology of communicable disease in small populations.
    Rhodes CJ; Butler AR; Anderson RM
    J Mol Med (Berl); 1998 Feb; 76(2):111-6. PubMed ID: 9500676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A discrete-time communicable disease model with a stochastic contact rate for nonhomogeneous populations.
    Enderle JD
    Biomed Sci Instrum; 1991; 27():77-88. PubMed ID: 2065180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent epidemics in small world networks.
    Verdasca J; Telo da Gama MM; Nunes A; Bernardino NR; Pacheco JM; Gomes MC
    J Theor Biol; 2005 Apr; 233(4):553-61. PubMed ID: 15748915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Travelling waves and spatial hierarchies in measles epidemics.
    Grenfell BT; Bjørnstad ON; Kappey J
    Nature; 2001 Dec; 414(6865):716-23. PubMed ID: 11742391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some model based considerations on observing generation times for communicable diseases.
    Scalia Tomba G; Svensson A; Asikainen T; Giesecke J
    Math Biosci; 2010 Jan; 223(1):24-31. PubMed ID: 19854206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito.
    Otero M; Solari HG
    Math Biosci; 2010 Jan; 223(1):32-46. PubMed ID: 19861133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation models for childhood epidemics.
    Keeling MJ; Rand DA; Morris AJ
    Proc Biol Sci; 1997 Aug; 264(1385):1149-56. PubMed ID: 9308191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal epidemic size distributions for near-critical SIR with vaccination.
    Gordillo LF; Marion SA; Martin-Löf A; Greenwood PE
    Bull Math Biol; 2008 Feb; 70(2):589-602. PubMed ID: 17992563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisited measles and chickenpox dynamics through orthogonal transformation.
    Kanjilal PP; Bhattacharya J
    J Theor Biol; 1999 Mar; 197(2):163-74. PubMed ID: 10074391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
    Lekone PE; Finkenstädt BF
    Biometrics; 2006 Dec; 62(4):1170-7. PubMed ID: 17156292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks.
    Finkenstädt BF; Bjørnstad ON; Grenfell BT
    Biostatistics; 2002 Dec; 3(4):493-510. PubMed ID: 12933594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of time distribution shape on a complex epidemic model.
    Camitz M; Svensson A
    Bull Math Biol; 2009 Nov; 71(8):1902-13. PubMed ID: 19475454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic amplification in an epidemic model with seasonal forcing.
    Black AJ; McKane AJ
    J Theor Biol; 2010 Nov; 267(1):85-94. PubMed ID: 20723547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.