BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9004452)

  • 1. Biotransformation and detoxification of insecticidal metyrapone analogues by carbonyl reduction in the human liver.
    Rekka EA; Soldan M; Belai I; Netter KJ; Maser E
    Xenobiotica; 1996 Dec; 26(12):1221-9. PubMed ID: 9004452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 11beta-Hydroxysteroid dehydrogenase type 1: tissue-specific expression and reductive metabolism of some anti-insect agent azole analogues of metyrapone.
    Bannenberg G; Martin HJ; Bélai I; Maser E
    Chem Biol Interact; 2003 Feb; 143-144():449-57. PubMed ID: 12604231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 11 beta-hydroxysteroid dehydrogenase mediates reductive metabolism of xenobiotic carbonyl compounds.
    Maser E; Bannenberg G
    Biochem Pharmacol; 1994 May; 47(10):1805-12. PubMed ID: 8204097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of the enzymes involved in the metabolism of 1-furan-2-yl-3-pyridin-2-yl-propenone, an anti-inflammatory propenone compound.
    Lee SK; Kim JH; Seo YM; Kim HC; Kang MJ; Jeong HG; Lee ES; Jeong TC
    Arch Pharm Res; 2008 Jun; 31(6):764-70. PubMed ID: 18563359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High carbonyl reductase activity in adrenal gland and ovary emphasizes its role in carbonyl compound detoxication.
    Maser E; Hoffmann JG; Friebertshäuser J; Netter KJ
    Toxicology; 1992 Aug; 74(1):45-56. PubMed ID: 1514187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonyl reduction of bupropion in human liver.
    Molnari JC; Myers AL
    Xenobiotica; 2012 Jun; 42(6):550-61. PubMed ID: 22339467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive metabolism of metyrapone by a quercitrin-sensitive ketone reductase in mouse liver cytosol.
    Maser E; Netter KJ
    Biochem Pharmacol; 1991 Jun; 41(11):1595-9. PubMed ID: 2043149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonyl reduction of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by cytosolic enzymes in human liver and lung.
    Maser E; Stinner B; Atalla A
    Cancer Lett; 2000 Feb; 148(2):135-44. PubMed ID: 10695989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oral pharmacokinetics and in-vitro metabolism of metyrapone in male rats.
    Murata H; Higuchi T; Otagiri M
    J Pharm Pharmacol; 2016 Aug; 68(8):970-9. PubMed ID: 27265478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species differences in the biotransformation of the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by hepatic microsomes and cytosols from humans, rats, and mice.
    Lin DX; Lang NP; Kadlubar FF
    Drug Metab Dispos; 1995 Apr; 23(4):518-24. PubMed ID: 7600922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid.
    Wang YP; Yan J; Fu PP; Chou MW
    Toxicol Lett; 2005 Mar; 155(3):411-20. PubMed ID: 15649625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of type-1 11beta-hydroxysteroid dehydrogenase in detoxification processes.
    Maser E; Oppermann UC
    Eur J Biochem; 1997 Oct; 249(2):365-9. PubMed ID: 9370342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 17 beta-Estradiol metabolism by hamster hepatic microsomes. Implications for the catechol-O-methyl transferase-mediated detoxication of catechol estrogens.
    Butterworth M; Lau SS; Monks TJ
    Drug Metab Dispos; 1996 May; 24(5):588-94. PubMed ID: 8723741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metyrapone reductase purified partially from liver microsomes of male rats: the enzyme differs from acetohexamide reductase.
    Imamura Y; Murata H; Otagiri M
    Res Commun Mol Pathol Pharmacol; 1997 May; 96(2):219-26. PubMed ID: 9226756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-ketocholanoic acid is the major in vitro human hepatic microsomal metabolite of lithocholic acid.
    Deo AK; Bandiera SM
    Drug Metab Dispos; 2009 Sep; 37(9):1938-47. PubMed ID: 19487251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro biotransformation of finasteride in rat hepatic microsomes. Isolation and characterization of metabolites.
    Ishii Y; Mukoyama H; Ohtawa M
    Drug Metab Dispos; 1994; 22(1):79-84. PubMed ID: 8149894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of terfenadine associated with CYP3A(4) activity in human hepatic microsomes.
    Ling KH; Leeson GA; Burmaster SD; Hook RH; Reith MK; Cheng LK
    Drug Metab Dispos; 1995 Jun; 23(6):631-6. PubMed ID: 7587944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of the potential anticancer drug oracin in the rat liver in-vitro.
    Szotáková B; Skálová L; Wsól V; Kvasniècková E
    J Pharm Pharmacol; 2000 May; 52(5):495-500. PubMed ID: 10864136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonyl reduction of metyrapone in human liver.
    Maser E; Gebel T; Netter KJ
    Biochem Pharmacol; 1991 Dec; 42 Suppl():S93-8. PubMed ID: 1722672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of lovastatin. II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin.
    Vyas KP; Kari PH; Prakash SR; Duggan DE
    Drug Metab Dispos; 1990; 18(2):218-22. PubMed ID: 1971576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.