These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9005703)

  • 21. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lens transmission of blue-green light in diabetic patients as measured by autofluorophotometry.
    van Best JA; Vrij L; Oosterhuis JA
    Invest Ophthalmol Vis Sci; 1985 Apr; 26(4):532-6. PubMed ID: 3980169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of diabetic duration on the secondary structures of the human lens capsules in diabetic cataracts.
    Lin SY; Lee SM; Cheng CL; Liang RC
    Biochem Biophys Res Commun; 1995 Nov; 216(1):183-9. PubMed ID: 7488086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin.
    Kumar PA; Suryanarayana P; Reddy PY; Reddy GB
    Mol Vis; 2005 Jul; 11():561-8. PubMed ID: 16088325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Prevalence of diabetes, antidiabetic treatment and chronic diabetic complications reported by general practitioners].
    Fabian W; Majkowska L; Stefański A; Moleda P
    Przegl Lek; 2005; 62(4):201-5. PubMed ID: 16229234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the pyridoindole antioxidant stobadine on development of experimental diabetic cataract and on lens protein oxidation in rats: comparison with vitamin E and BHT.
    Kyselova Z; Gajdosik A; Gajdosikova A; Ulicna O; Mihalova D; Karasu C; Stefek M
    Mol Vis; 2005 Jan; 11():56-65. PubMed ID: 15682043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Levels of zinc and magnesium in senile and diabetic senile cataractous lenses.
    Gündüz G; Gündüz F; Yücel I; Sentürk UK
    Biol Trace Elem Res; 2003 Nov; 95(2):107-12. PubMed ID: 14645992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased content of zinc and iron in human cataractous lenses.
    Dawczynski J; Blum M; Winnefeld K; Strobel J
    Biol Trace Elem Res; 2002; 90(1-3):15-23. PubMed ID: 12666821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycation of human lens proteins from diabetic and (nondiabetic) senile cataract patients.
    Duhaiman AS
    Glycoconj J; 1995 Oct; 12(5):618-21. PubMed ID: 8595250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Posterior capsule opacification after cataract surgery in patients with diabetes mellitus.
    Ebihara Y; Kato S; Oshika T; Yoshizaki M; Sugita G
    J Cataract Refract Surg; 2006 Jul; 32(7):1184-7. PubMed ID: 16857507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acetyl- L -carnitine decreases glycation of lens proteins: in vitro studies.
    Swamy-Mruthinti S; Carter AL
    Exp Eye Res; 1999 Jul; 69(1):109-15. PubMed ID: 10375455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes.
    Gardiner TA; Anderson HR; Stitt AW
    J Pathol; 2003 Oct; 201(2):328-33. PubMed ID: 14517851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel advanced glycation index and its association with diabetes and microangiopathy.
    Sampathkumar R; Balasubramanyam M; Rema M; Premanand C; Mohan V
    Metabolism; 2005 Aug; 54(8):1002-7. PubMed ID: 16092048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retinopathy in patients with diabetic ophthalmoplegia.
    Trigler L; Siatkowski RM; Oster AS; Feuer WJ; Betts CL; Glaser JS; Schatz NJ; Farris BK; Flynn HW
    Ophthalmology; 2003 Aug; 110(8):1545-50. PubMed ID: 12917170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent and compositional changes in crystallin supramolecular structures in pig lens during development.
    Garcia-Barreno P; Guisasola MC; Suarez A
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jun; 141(2):179-85. PubMed ID: 15908249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycation and advanced glycation end-products in laboratory experiments in vivo and in vitro.
    Beránek M; Nováková D; Rozsíval P; Drsata J; Palicka V
    Acta Medica (Hradec Kralove); 2006; 49(1):35-9. PubMed ID: 16696441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycation of nail proteins: from basic biochemical findings to a representative marker for diabetic glycation-associated target organ damage.
    Kishabongo AS; Katchunga P; Van Aken EH; Speeckaert R; Lagniau S; Coopman R; Speeckaert MM; Delanghe JR
    PLoS One; 2015; 10(3):e0120112. PubMed ID: 25781337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ocular fluorophotometry in diabetic patients without apparent retinopathy.
    Kayazawa F
    Ann Ophthalmol; 1984 Mar; 16(3):221-5. PubMed ID: 6712065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autofluorescence of the crystalline lens in early and late onset diabetes.
    Sparrow JM; Bron AJ; Brown NA; Neil HA
    Br J Ophthalmol; 1992 Jan; 76(1):25-31. PubMed ID: 1739687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced glycation end products in diabetic and non-diabetic human subjects suffering from cataract.
    Hashim Z; Zarina S
    Age (Dordr); 2011 Sep; 33(3):377-84. PubMed ID: 20842534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.