BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9005929)

  • 1. Particulate bioglass compared with hydroxyapatite as a bone graft substitute.
    Oonishi H; Kushitani S; Yasukawa E; Iwaki H; Hench LL; Wilson J; Tsuji E; Sugihara T
    Clin Orthop Relat Res; 1997 Jan; (334):316-25. PubMed ID: 9005929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanically processable bioactive glass ceramics--a new biomaterial for bone replacement. 1].
    Gummel J; Höland W; Naumann K; Vogel W
    Z Exp Chir Transplant Kunstliche Organe; 1983; 16(6):338-43. PubMed ID: 6666190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model.
    Stubbs D; Deakin M; Chapman-Sheath P; Bruce W; Debes J; Gillies RM; Walsh WR
    Biomaterials; 2004 Sep; 25(20):5037-44. PubMed ID: 15109866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histological evaluation of the effects of bioglass, hydroxyapatite, or demineralized freeze-dried bone, grafted alone or as composites, on the healing of tibial defects in rabbits.
    Kucukkolbasi H; Mutlu N; Isik K; Celik I; Oznurlu Y
    Saudi Med J; 2009 Mar; 30(3):329-33. PubMed ID: 19271058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds.
    Day RM; Boccaccini AR; Shurey S; Roether JA; Forbes A; Hench LL; Gabe SM
    Biomaterials; 2004 Dec; 25(27):5857-66. PubMed ID: 15172498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of resorbable bioactive material for grafting of critical-size cancellous defects.
    Wheeler DL; Eschbach EJ; Hoellrich RG; Montfort MJ; Chamberland DL
    J Orthop Res; 2000 Jan; 18(1):140-8. PubMed ID: 10716290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue.
    Nakamura T; Yamamuro T; Higashi S; Kokubo T; Itoo S
    J Biomed Mater Res; 1985; 19(6):685-98. PubMed ID: 3001094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical and histologic comparison of two different composite grafts for sinus augmentation: a pilot clinical trial.
    Galindo-Moreno P; Avila G; Fernández-Barbero JE; Mesa F; O'Valle-Ravassa F; Wang HL
    Clin Oral Implants Res; 2008 Aug; 19(8):755-9. PubMed ID: 18573123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of bioactive glass: from Hench to hybrids.
    Jones JR
    Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic, and hydroxyapatite.
    Oonishi H; Hench LL; Wilson J; Sugihara F; Tsuji E; Matsuura M; Kin S; Yamamoto T; Mizokawa S
    J Biomed Mater Res; 2000 Jul; 51(1):37-46. PubMed ID: 10813743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Bioglass/dextran composite as a bone graft substitute.
    Chan C; Thompson I; Robinson P; Wilson J; Hench L
    Int J Oral Maxillofac Surg; 2002 Feb; 31(1):73-7. PubMed ID: 11936404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].
    Dawidowicz A; Pielka S; Paluch D; Kuryszko J; Staniszewska-Kuś J; Solski L
    Polim Med; 2005; 35(1):3-14. PubMed ID: 16050072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Use of bioactive glass ceramics in the treatment of tibial plateau fractures].
    Urban K
    Acta Chir Orthop Traumatol Cech; 2002; 69(5):295-301. PubMed ID: 12557600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone graft substitutes: a comparative qualitative histologic review of current osteoconductive grafting materials.
    Al Ruhaimi KA
    Int J Oral Maxillofac Implants; 2001; 16(1):105-14. PubMed ID: 11280355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The research of degradability of a novel biodegradable coralline hydroxyapatite after implanted into rabbit.
    Ning Y; Wei T; Defu C; Yonggang X; Da H; Dafu C; Lei S; Zhizhong G
    J Biomed Mater Res A; 2009 Mar; 88(3):741-6. PubMed ID: 18357581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).
    Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V
    J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicology and biocompatibility of bioglasses.
    Wilson J; Pigott GH; Schoen FJ; Hench LL
    J Biomed Mater Res; 1981 Nov; 15(6):805-17. PubMed ID: 7309763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal experimentation with tooth derived calcium hydroxyapatite based composites as bone-graft substitute biomaterials.
    Pal AK; Pal TK; Mukherjee K; Pal S
    Biomed Sci Instrum; 1997; 33():561-6. PubMed ID: 9731422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The incorporation of 70s bioactive glass to the osteogenic differentiation of murine embryonic stem cells in 3D bioreactors.
    Zhang J; Wang M; Cha JM; Mantalaris A
    J Tissue Eng Regen Med; 2009 Jan; 3(1):63-71. PubMed ID: 19053163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. B2A peptide on ceramic granules enhance posterolateral spinal fusion in rabbits compared with autograft.
    Smucker JD; Bobst JA; Petersen EB; Nepola JV; Fredericks DC
    Spine (Phila Pa 1976); 2008 May; 33(12):1324-9. PubMed ID: 18496344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.