BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9006025)

  • 81. Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana.
    Klähn S; Marquardt DM; Rollwitz I; Hagemann M
    J Exp Bot; 2009; 60(6):1679-89. PubMed ID: 19363207
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Slr1670 from Synechocystis sp. PCC 6803 Is Required for the Re-assimilation of the Osmolyte Glucosylglycerol.
    Savakis P; Tan X; Qiao C; Song K; Lu X; Hellingwerf KJ; Branco Dos Santos F
    Front Microbiol; 2016; 7():1350. PubMed ID: 27621728
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The KtrA and KtrE subunits are required for Na+-dependent K+ uptake by KtrB across the plasma membrane in Synechocystis sp. strain PCC 6803.
    Zulkifli L; Akai M; Yoshikawa A; Shimojima M; Ohta H; Guy HR; Uozumi N
    J Bacteriol; 2010 Oct; 192(19):5063-70. PubMed ID: 20656904
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A cAMP receptor protein, SYCRP1, is responsible for the cell motility of Synechocystis sp. PCC 6803.
    Yoshimura H; Yoshihara S; Okamoto S; Ikeuchi M; Ohmori M
    Plant Cell Physiol; 2002 Apr; 43(4):460-3. PubMed ID: 11978874
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A gene of Synechocystis sp. Strain PCC 6803 encoding a novel iron transporter.
    Katoh H; Grossman AR; Hagino N; Ogawa T
    J Bacteriol; 2000 Nov; 182(22):6523-4. PubMed ID: 11053401
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis.
    Shibata M; Katoh H; Sonoda M; Ohkawa H; Shimoyama M; Fukuzawa H; Kaplan A; Ogawa T
    J Biol Chem; 2002 May; 277(21):18658-64. PubMed ID: 11904298
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Glucosylglycerol-phosphate synthase: target for ion-mediated regulation of osmolyte synthesis in the cyanobacterium synechocystis sp. strain PCC 6803.
    Schoor A; Hagemann M; Erdmann N
    Arch Microbiol; 1999 Jan; 171(2):101-6. PubMed ID: 9914306
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Integrative analysis of the salt stress response in cyanobacteria.
    Klähn S; Mikkat S; Riediger M; Georg J; Hess WR; Hagemann M
    Biol Direct; 2021 Dec; 16(1):26. PubMed ID: 34906211
    [TBL] [Abstract][Full Text] [Related]  

  • 89. HatA and HatR, implicated in the uptake of inorganic carbon in Synechocystis PCC6803, contain WD40 domains.
    Dagnall BH; Saier MH
    Mol Microbiol; 1997 Apr; 24(1):229-30. PubMed ID: 9140979
    [No Abstract]   [Full Text] [Related]  

  • 90. The Response Regulator Slr1588 Regulates
    Song K; Hagemann M; Tan X; Lu X
    Front Microbiol; 2017; 8():1176. PubMed ID: 28694802
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Carbon-13 NMR studies of salt shock-induced carbohydrate turnover in the marine cyanobacterium Agmenellum quadruplicatum.
    Tel-Or E; Spath S; Packer L; Mehlhorn RJ
    Plant Physiol; 1986; 82(3):646-52. PubMed ID: 11539092
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Biological sources, metabolism, and production of glucosylglycerols, a group of natural glucosides of biotechnological interest.
    Luo Q; Duan Y; Lu X
    Biotechnol Adv; 2022 Oct; 59():107964. PubMed ID: 35452777
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Determination of Intracellular Osmolytes in Cyanobacterial Cells.
    Tan X; Song K; Qiao C; Lu X
    Bio Protoc; 2018 Apr; 8(8):e2812. PubMed ID: 34286027
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The role of transcriptional repressor activity of LexA in salt-stress responses of the cyanobacterium Synechocystis sp. PCC 6803.
    Takashima K; Nagao S; Kizawa A; Suzuki T; Dohmae N; Hihara Y
    Sci Rep; 2020 Oct; 10(1):17393. PubMed ID: 33060671
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Expanding the toolbox for
    Ferreira EA; Pacheco CC; Pinto F; Pereira J; Lamosa P; Oliveira P; Kirov B; Jaramillo A; Tamagnini P
    Synth Biol (Oxf); 2018; 3(1):ysy014. PubMed ID: 32995522
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Contribution of mechanosensitive channels to osmoadaptation and ectoine excretion in Halomonas elongata.
    Vandrich J; Pfeiffer F; Alfaro-Espinoza G; Kunte HJ
    Extremophiles; 2020 May; 24(3):421-432. PubMed ID: 32266565
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803.
    Mills LA; McCormick AJ; Lea-Smith DJ
    Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32149336
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biosynthesis of the Stress-Protectant and Chemical Chaperon Ectoine: Biochemistry of the Transaminase EctB.
    Richter AA; Mais CN; Czech L; Geyer K; Hoeppner A; Smits SHJ; Erb TJ; Bange G; Bremer E
    Front Microbiol; 2019; 10():2811. PubMed ID: 31921013
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Salt-Regulated Accumulation of the Compatible Solutes Sucrose and Glucosylglycerol in Cyanobacteria and Its Biotechnological Potential.
    Kirsch F; Klähn S; Hagemann M
    Front Microbiol; 2019; 10():2139. PubMed ID: 31572343
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.