These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 9006028)

  • 1. Role of conserved residues in hydrophilic loop 8-9 of the lactose permease.
    Pazdernik NJ; Jessen-Marshall AE; Brooker RJ
    J Bacteriol; 1997 Feb; 179(3):735-41. PubMed ID: 9006028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressor analysis of mutations in the loop 2-3 motif of lactose permease: evidence that glycine-64 is an important residue for conformational changes.
    Jessen-Marshall AE; Parker NJ; Brooker RJ
    J Bacteriol; 1997 Apr; 179(8):2616-22. PubMed ID: 9098060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that transmembrane segment 2 of the lactose permease is part of a conformationally sensitive interface between the two halves of the protein.
    Jessen-Marshall AE; Brooker RJ
    J Biol Chem; 1996 Jan; 271(3):1400-4. PubMed ID: 8576130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conserved motif in hydrophilic loop 2/3 and loop 8/9 of the lactose permease of Escherichia coli. Analysis of suppressor mutations.
    Cain SM; Matzke EA; Brooker RJ
    J Membr Biol; 2000 Jul; 176(2):159-68. PubMed ID: 10926681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of charged residues in the conserved motif, G-X-X-X-D/E-R/K-X-G-[X]-R/K-R/K, of the lactose permease of Escherichia coli.
    Pazdernik NJ; Matzke EA; Jessen-Marshall AE; Brooker RJ
    J Membr Biol; 2000 Mar; 174(1):31-40. PubMed ID: 10741430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conserved motif, GXXX(D/E)(R/K)XG[X](R/K)(R/K), in hydrophilic loop 2/3 of the lactose permease.
    Jessen-Marshall AE; Paul NJ; Brooker RJ
    J Biol Chem; 1995 Jul; 270(27):16251-7. PubMed ID: 7608191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of suppressor mutations suggests that the two halves of the lactose permease function in a symmetrical manner.
    Pazdernik NJ; Cain SM; Brooker RJ
    J Biol Chem; 1997 Oct; 272(42):26110-6. PubMed ID: 9334175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A face on transmembrane segment 8 of the lactose permease is important for transport activity.
    Green AL; Brooker RJ
    Biochemistry; 2001 Oct; 40(40):12220-9. PubMed ID: 11580298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli.
    Frillingos S; Sun J; Gonzalez A; Kaback HR
    Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A revised model for the structure and function of the lactose permease. Evidence that a face on transmembrane segment 2 is important for conformational changes.
    Green AL; Anderson EJ; Brooker RJ
    J Biol Chem; 2000 Jul; 275(30):23240-6. PubMed ID: 10807929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering conformational flexibility in the lactose permease of Escherichia coli: use of glycine-scanning mutagenesis to rescue mutant Glu325-->Asp.
    Weinglass AB; Smirnova IN; Kaback HR
    Biochemistry; 2001 Jan; 40(3):769-76. PubMed ID: 11170394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine-scanning mutagenesis of transmembrane domain XII and the flanking periplasmic loop in the lactose permease of EScherichia coli.
    He MM; Sun J; Kaback HR
    Biochemistry; 1996 Oct; 35(39):12909-14. PubMed ID: 8841135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli.
    Franco PJ; Brooker RJ
    J Biol Chem; 1994 Mar; 269(10):7379-86. PubMed ID: 7907327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A K319N/E325Q double mutant of the lactose permease cotransports H+ with lactose. Implications for a proposed mechanism of H+/lactose symport.
    Johnson JL; Brooker RJ
    J Biol Chem; 1999 Feb; 274(7):4074-81. PubMed ID: 9933600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of glycine residues in the structure and function of lactose permease, an Escherichia coli membrane transport protein.
    Jung K; Jung H; Colacurcio P; Kaback HR
    Biochemistry; 1995 Jan; 34(3):1030-9. PubMed ID: 7827019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off.
    Frillingos S; Gonzalez A; Kaback HR
    Biochemistry; 1997 Nov; 36(47):14284-90. PubMed ID: 9400367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exchange, efflux, and substrate binding by cysteine mutants of the lactose permease of Escherichia coli.
    van Iwaarden PR; Driessen AJ; Lolkema JS; Kaback HR; Konings WN
    Biochemistry; 1993 May; 32(20):5419-24. PubMed ID: 8499445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoclonal antibody 4B1 alters the pKa of a carboxylic acid at position 325 (helix X) of the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Aug; 35(31):10166-71. PubMed ID: 8756481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a membrane protein for site-specific proteolysis: properties of engineered factor Xa protease sites in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Dunten RL; Kaback HR
    Biochemistry; 1995 Jan; 34(4):1107-12. PubMed ID: 7827058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.