These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 9006028)
41. Purification and functional characterization of the C-terminal half of the lactose permease of Escherichia coli. Wu J; Sun J; Kaback HR Biochemistry; 1996 Apr; 35(16):5213-9. PubMed ID: 8611506 [TBL] [Abstract][Full Text] [Related]
42. Sulfhydryl oxidation of mutants with cysteine in place of acidic residues in the lactose permease. Voss J; Sun J; Venkatesan P; Kaback HR Biochemistry; 1998 Jun; 37(22):8191-6. PubMed ID: 9609715 [TBL] [Abstract][Full Text] [Related]
43. Characterization of site-directed mutants in the lac permease of Escherichia coli. 1. Replacement of histidine residues. Püttner IB; Sarkar HK; Padan E; Lolkema JS; Kaback HR Biochemistry; 1989 Mar; 28(6):2525-33. PubMed ID: 2659072 [TBL] [Abstract][Full Text] [Related]
44. Functional estimation of loop-helix boundaries in the lactose permease of Escherichia coli by single amino acid deletion analysis. Wolin CD; Kaback HR Biochemistry; 2001 Feb; 40(7):1996-2003. PubMed ID: 11329266 [TBL] [Abstract][Full Text] [Related]
45. Ligand-induced conformational changes in the lactose permease of Escherichia coli: evidence for two binding sites. Wu J; Frillingos S; Voss J; Kaback HR Protein Sci; 1994 Dec; 3(12):2294-301. PubMed ID: 7756985 [TBL] [Abstract][Full Text] [Related]
46. Isolation and characterization of lactose permease mutants with an enhanced recognition of maltose and diminished recognition of cellobiose. Collins JC; Permuth SF; Brooker RJ J Biol Chem; 1989 Sep; 264(25):14698-703. PubMed ID: 2670925 [TBL] [Abstract][Full Text] [Related]
47. Construction of a functional lactose permease devoid of cysteine residues. van Iwaarden PR; Pastore JC; Konings WN; Kaback HR Biochemistry; 1991 Oct; 30(40):9595-600. PubMed ID: 1911745 [TBL] [Abstract][Full Text] [Related]
48. Functional role of arginine 302 within the lactose permease of Escherichia coli. Matzke EA; Stephenson LJ; Brooker RJ J Biol Chem; 1992 Sep; 267(27):19095-100. PubMed ID: 1527034 [TBL] [Abstract][Full Text] [Related]
49. Evidence that the final turn of the last transmembrane helix in the lactose permease is required for folding. McKenna E; Hardy D; Kaback HR J Biol Chem; 1992 Apr; 267(10):6471-4. PubMed ID: 1551862 [TBL] [Abstract][Full Text] [Related]
50. Identification of the epitope for monoclonal antibody 4B1 which uncouples lactose and proton translocation in the lactose permease of Escherichia coli. Sun J; Wu J; Carrasco N; Kaback HR Biochemistry; 1996 Jan; 35(3):990-8. PubMed ID: 8547282 [TBL] [Abstract][Full Text] [Related]
51. Site-directed mutagenesis of Pro327 in the lac permease of Escherichia coli. Lolkema JS; Püttner IB; Kaback HR Biochemistry; 1988 Nov; 27(22):8307-10. PubMed ID: 3072017 [TBL] [Abstract][Full Text] [Related]
52. Kinetic analysis of lactose and proton coupling in Glu379 mutants of the lactose transport protein of Streptococcus thermophilus. Poolman B; Knol J; Lolkema JS J Biol Chem; 1995 Jun; 270(22):12995-3003. PubMed ID: 7768891 [TBL] [Abstract][Full Text] [Related]
54. The role of helix VIII in the lactose permease of Escherichia coli: II. Site-directed sulfhydryl modification. Frillingos S; Kaback HR Protein Sci; 1997 Feb; 6(2):438-43. PubMed ID: 9041647 [TBL] [Abstract][Full Text] [Related]
55. Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Sahin-Tóth M; Dunten RL; Gonzalez A; Kaback HR Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10547-51. PubMed ID: 1438245 [TBL] [Abstract][Full Text] [Related]
56. Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose. Franco PJ; Eelkema JA; Brooker RJ J Biol Chem; 1989 Sep; 264(27):15988-92. PubMed ID: 2674122 [TBL] [Abstract][Full Text] [Related]
57. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. I. Val177 and Val177/Asn319 permeases facilitate proton uniport and sugar uniport. Brooker RJ J Biol Chem; 1991 Mar; 266(7):4131-8. PubMed ID: 1999407 [TBL] [Abstract][Full Text] [Related]
58. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change. Weitzman C; Consler TG; Kaback HR Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627 [TBL] [Abstract][Full Text] [Related]
59. Site-directed mutagenesis of tyrosine residues in the lac permease of Escherichia coli. Roepe PD; Kaback HR Biochemistry; 1989 Jul; 28(14):6127-32. PubMed ID: 2673353 [TBL] [Abstract][Full Text] [Related]
60. A change of threonine 266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose. Markgraf M; Bocklage H; Müller-Hill B Mol Gen Genet; 1985; 198(3):473-5. PubMed ID: 3892229 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]