BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 9006362)

  • 1. Mechanics of type IV tympanoplasty: experimental findings and surgical implications.
    Merchant SN; Ravicz ME; Rosowski JJ
    Ann Otol Rhinol Laryngol; 1997 Jan; 106(1):49-60. PubMed ID: 9006362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Middle ear mechanics of Type III tympanoplasty (stapes columella): II. Clinical studies.
    Merchant SN; McKenna MJ; Mehta RP; Ravicz ME; Rosowski JJ
    Otol Neurotol; 2003 Mar; 24(2):186-94. PubMed ID: 12621330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Middle-ear mechanics of Type III tympanoplasty (stapes columella): I. Experimental studies.
    Mehta RP; Ravicz ME; Rosowski JJ; Merchant SN
    Otol Neurotol; 2003 Mar; 24(2):176-85. PubMed ID: 12621329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Middle ear mechanics of type IV and type V tympanoplasty: I. Model analysis and predictions.
    Rosowski JJ; Merchant SN; Ravicz ME
    Am J Otol; 1995 Sep; 16(5):555-64. PubMed ID: 8588660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Silastic sheeting over the round window niche on sound transmission in the intact human middle ear.
    Alian WA; Majdalawieh OF; Van Wijhe RG; Ejnell H; Bance M
    J Otolaryngol Head Neck Surg; 2012 Feb; 41(1):1-7. PubMed ID: 22498261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the mechanics of Type III stapes columella tympanoplasty using laser-Doppler vibrometry.
    Chien W; Rosowski JJ; Merchant SN
    Otol Neurotol; 2007 Sep; 28(6):782-7. PubMed ID: 17948356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle ear mechanics of type IV and type V tympanoplasty: II. Clinical analysis and surgical implications.
    Merchant SN; Rosowski JJ; Ravicz ME
    Am J Otol; 1995 Sep; 16(5):565-75. PubMed ID: 8588661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and acoustic analysis of middle ear reconstruction.
    Rosowski JJ; Merchant SN
    Am J Otol; 1995 Jul; 16(4):486-97. PubMed ID: 8588650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic impedances at the oval window, and sound pressure transformation of the middle ear in Norwegian cattle.
    Kringlebotn M
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1094-104. PubMed ID: 11008812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canal wall up tympanoplasty for cholesteatoma with intact stapes. Comparison of hearing results between cartilage and PORP on stapes and impact of malleus removal and total reinforcement of the tympanic membrane by cartilage.
    Quérat C; Martin C; Prades JM; Richard C
    Eur Ann Otorhinolaryngol Head Neck Dis; 2014 Sep; 131(4):211-6. PubMed ID: 24954899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candidate's thesis: Revision tympanoplasty utilizing fossa triangularis cartilage.
    Moore GF
    Laryngoscope; 2002 Sep; 112(9):1543-54. PubMed ID: 12352661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between postoperative aeration around the stapes and postoperative hearing outcome after canal wall down tympanoplasty with canal reconstruction for cholesteatoma.
    Shinnabe A; Hara M; Hasegawa M; Matsuzawa S; Kodama K; Kanazawa H; Yoshida N; Iino Y
    Otol Neurotol; 2011 Oct; 32(8):1230-3. PubMed ID: 21897316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Middle ear mechanics of cartilage tympanoplasty evaluated by laser holography and vibrometry.
    Aarnisalo AA; Cheng JT; Ravicz ME; Hulli N; Harrington EJ; Hernandez-Montes MS; Furlong C; Merchant SN; Rosowski JJ
    Otol Neurotol; 2009 Dec; 30(8):1209-14. PubMed ID: 19779389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toynbee Memorial Lecture 1997. Middle ear mechanics in normal, diseased and reconstructed ears.
    Merchant SN; Ravicz ME; Voss SE; Peake WT; Rosowski JJ
    J Laryngol Otol; 1998 Aug; 112(8):715-31. PubMed ID: 9850313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone conduction in Thiel-embalmed cadaver heads.
    Guignard J; Stieger C; Kompis M; Caversaccio M; Arnold A
    Hear Res; 2013 Dec; 306():115-22. PubMed ID: 24161399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.