These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 9006940)
1. Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan. Charnock SJ; Lakey JH; Virden R; Hughes N; Sinnott ML; Hazlewood GP; Pickersgill R; Gilbert HJ J Biol Chem; 1997 Jan; 272(5):2942-51. PubMed ID: 9006940 [TBL] [Abstract][Full Text] [Related]
2. The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. Charnock SJ; Spurway TD; Xie H; Beylot MH; Virden R; Warren RA; Hazlewood GP; Gilbert HJ J Biol Chem; 1998 Nov; 273(48):32187-99. PubMed ID: 9822697 [TBL] [Abstract][Full Text] [Related]
3. Influence of the aglycone region of the substrate binding cleft of Pseudomonas xylanase 10A on catalysis. Armand S; Andrews SR; Charnock SJ; Gilbert HJ Biochemistry; 2001 Jun; 40(25):7404-9. PubMed ID: 11412093 [TBL] [Abstract][Full Text] [Related]
4. X-ray crystallographic study of xylopentaose binding to Pseudomonas fluorescens xylanase A. Leggio LL; Jenkins J; Harris GW; Pickersgill RW Proteins; 2000 Nov; 41(3):362-73. PubMed ID: 11025547 [TBL] [Abstract][Full Text] [Related]
5. Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant. Schmidt A; Gübitz GM; Kratky C Biochemistry; 1999 Feb; 38(8):2403-12. PubMed ID: 10029534 [TBL] [Abstract][Full Text] [Related]
7. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Ferreira LM; Durrant AJ; Hall J; Hazlewood GP; Gilbert HJ Biochem J; 1990 Jul; 269(1):261-4. PubMed ID: 2115772 [TBL] [Abstract][Full Text] [Related]
8. Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Harris GW; Jenkins JA; Connerton I; Cummings N; Lo Leggio L; Scott M; Hazlewood GP; Laurie JI; Gilbert HJ; Pickersgill RW Structure; 1994 Nov; 2(11):1107-16. PubMed ID: 7881909 [TBL] [Abstract][Full Text] [Related]
9. Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module. Fujimoto Z; Kuno A; Kaneko S; Kobayashi H; Kusakabe I; Mizuno H J Mol Biol; 2002 Feb; 316(1):65-78. PubMed ID: 11829503 [TBL] [Abstract][Full Text] [Related]
10. Substrate specificity in glycoside hydrolase family 10. Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of Pseudomonas cellulosa xylanase 10A. Andrews SR; Charnock SJ; Lakey JH; Davies GJ; Claeyssens M; Nerinckx W; Underwood M; Sinnott ML; Warren RA; Gilbert HJ J Biol Chem; 2000 Jul; 275(30):23027-33. PubMed ID: 10767281 [TBL] [Abstract][Full Text] [Related]
11. Conservation in the mechanism of glucuronoxylan hydrolysis revealed by the structure of glucuronoxylan xylanohydrolase (CtXyn30A) from Clostridium thermocellum. Freire F; Verma A; Bule P; Alves VD; Fontes CM; Goyal A; Najmudin S Acta Crystallogr D Struct Biol; 2016 Nov; 72(Pt 11):1162-1173. PubMed ID: 27841749 [TBL] [Abstract][Full Text] [Related]
12. Do the non-catalytic polysaccharide-binding domains and linker regions enhance the biobleaching properties of modular xylanases? Rixon JE; Clarke JH; Hazlewood GP; Hoyland RW; McCarthy AJ; Gilbert HJ Appl Microbiol Biotechnol; 1996 Dec; 46(5-6):514-20. PubMed ID: 9008884 [TBL] [Abstract][Full Text] [Related]
13. The Glycoside Hydrolase Family 8 Reducing-End Xylose-Releasing Exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 Is Active on Branched Xylooligosaccharides. Valenzuela SV; Lopez S; Biely P; Sanz-Aparicio J; Pastor FI Appl Environ Microbiol; 2016 Sep; 82(17):5116-24. PubMed ID: 27316951 [TBL] [Abstract][Full Text] [Related]
14. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Black GW; Rixon JE; Clarke JH; Hazlewood GP; Theodorou MK; Morris P; Gilbert HJ Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):515-20. PubMed ID: 8912689 [TBL] [Abstract][Full Text] [Related]
15. The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage beta-1,3/beta-1, 4-glucan. Meissner K; Wassenberg D; Liebl W Mol Microbiol; 2000 May; 36(4):898-912. PubMed ID: 10844677 [TBL] [Abstract][Full Text] [Related]
16. The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Gill J; Rixon JE; Bolam DN; McQueen-Mason S; Simpson PJ; Williamson MP; Hazlewood GP; Gilbert HJ Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):473-80. PubMed ID: 10455036 [TBL] [Abstract][Full Text] [Related]
17. XynX, a possible exo-xylanase of Aeromonas caviae ME-1 that produces exclusively xylobiose and xylotetraose from xylan. Usui K; Ibata K; Suzuki T; Kawai K Biosci Biotechnol Biochem; 1999 Aug; 63(8):1346-52. PubMed ID: 10500996 [TBL] [Abstract][Full Text] [Related]