These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 9007577)
1. Intracellular distributions and putative functions of calcium-binding proteins in the bullfrog vestibular otolith organs. Baird RA; Steyger PS; Schuff NR Hear Res; 1997 Jan; 103(1-2):85-100. PubMed ID: 9007577 [TBL] [Abstract][Full Text] [Related]
2. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs. Steyger PS; Burton M; Hawkins JR; Schuff NR; Baird RA Int J Dev Neurosci; 1997 Jul; 15(4-5):417-32. PubMed ID: 9263023 [TBL] [Abstract][Full Text] [Related]
3. Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Pack AK; Slepecky NB Hear Res; 1995 Nov; 91(1-2):119-35. PubMed ID: 8647714 [TBL] [Abstract][Full Text] [Related]
4. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus. Baird RA; Schuff NR J Comp Neurol; 1994 Apr; 342(2):279-98. PubMed ID: 8201035 [TBL] [Abstract][Full Text] [Related]
5. Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. Desai SS; Zeh C; Lysakowski A J Neurophysiol; 2005 Jan; 93(1):251-66. PubMed ID: 15240767 [TBL] [Abstract][Full Text] [Related]
6. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. I. Responses to intracellular current. Baird RA J Neurophysiol; 1994 Feb; 71(2):666-84. PubMed ID: 7909840 [TBL] [Abstract][Full Text] [Related]
7. Parvalbumin, calbindin, and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus. Yan YH; Winarto A; Mansjoer I; Hendrickson A J Neurobiol; 1996 Oct; 31(2):189-209. PubMed ID: 8885200 [TBL] [Abstract][Full Text] [Related]
8. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity. Baird RA; Torres MA; Schuff NR Hear Res; 1993 Feb; 65(1-2):164-74. PubMed ID: 8458749 [TBL] [Abstract][Full Text] [Related]
9. The distribution of calcium buffering proteins in the turtle cochlea. Hackney CM; Mahendrasingam S; Jones EM; Fettiplace R J Neurosci; 2003 Jun; 23(11):4577-89. PubMed ID: 12805298 [TBL] [Abstract][Full Text] [Related]
10. Mitotic and nonmitotic hair cell regeneration in the bullfrog vestibular otolith organs. Baird RA; Steyger PS; Schuff NR Ann N Y Acad Sci; 1996 Jun; 781():59-70. PubMed ID: 8694449 [No Abstract] [Full Text] [Related]
11. Molecular probes of the vestibular nerve. II. Characterization of neurons in Scarpa's ganglion to determine separate populations within the nerve. Kevetter GA; Leonard RB Brain Res; 2002 Feb; 928(1-2):18-29. PubMed ID: 11844468 [TBL] [Abstract][Full Text] [Related]
12. Distribution of calretinin, calbindin D28k, and parvalbumin in subcellular fractions of rat cerebellum: effects of calcium. Winsky L; Kuźnicki J J Neurochem; 1995 Jul; 65(1):381-8. PubMed ID: 7790883 [TBL] [Abstract][Full Text] [Related]
13. Neurochemical development of the hippocampal region in the fetal rhesus monkey, III: calbindin-D28K, calretinin and parvalbumin with special mention of cajal-retzius cells and the retrosplenial cortex. Berger B; Alvarez C J Comp Neurol; 1996 Mar; 366(4):674-99. PubMed ID: 8833116 [TBL] [Abstract][Full Text] [Related]
14. Molecular probes of the vestibular nerve. I. Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Leonard RB; Kevetter GA Brain Res; 2002 Feb; 928(1-2):8-17. PubMed ID: 11844467 [TBL] [Abstract][Full Text] [Related]
15. Calmodulin binding to the intestinal brush-border membrane: comparison to other calcium-binding proteins. Bikle D; Munson S; Christakos S; Kumar R; Buckendahl P Biochim Biophys Acta; 1989 Jan; 1010(1):122-7. PubMed ID: 2909247 [TBL] [Abstract][Full Text] [Related]
16. Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker. Zheng JL; Gao WQ J Neurosci; 1997 Nov; 17(21):8270-82. PubMed ID: 9334402 [TBL] [Abstract][Full Text] [Related]
17. Developmental appearance of the Ca2+-binding proteins parvalbumin, calbindin D-28K, S-100 proteins and calmodulin during testicular development in the rat. Kägi U; Chafouleas JG; Norman AW; Heizmann CW Cell Tissue Res; 1988 May; 252(2):359-65. PubMed ID: 3383215 [TBL] [Abstract][Full Text] [Related]
18. Calcium-binding proteins in the retina of a calbindin-null mutant mouse. Wässle H; Peichl L; Airaksinen MS; Meyer M Cell Tissue Res; 1998 May; 292(2):211-8. PubMed ID: 9560464 [TBL] [Abstract][Full Text] [Related]
19. Immunolocalization of peptide 19 and other calcium-binding proteins in the guinea pig cochlea. Imamura S; Adams JC Anat Embryol (Berl); 1996 Oct; 194(4):407-18. PubMed ID: 8896705 [TBL] [Abstract][Full Text] [Related]
20. Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat. Baizer JS; Baker JF Exp Brain Res; 2005 Jul; 164(1):78-91. PubMed ID: 15662522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]