These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9007750)

  • 1. Voltage-sensitive dye recording using retrogradely transported dye in the chicken spinal cord: staining and signal characteristics.
    Wenner P; Tsau Y; Cohen LB; O'Donovan MJ; Dan Y
    J Neurosci Methods; 1996 Dec; 70(2):111-20. PubMed ID: 9007750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dye screening and signal-to-noise ratio for retrogradely transported voltage-sensitive dyes.
    Tsau Y; Wenner P; O'Donovan MJ; Cohen LB; Loew LM; Wuskell JP
    J Neurosci Methods; 1996 Dec; 70(2):121-9. PubMed ID: 9007751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical mapping of neural network activity in chick spinal cord at an intermediate stage of embryonic development.
    Arai Y; Momose-Sato Y; Sato K; Kamino K
    J Neurophysiol; 1999 Apr; 81(4):1889-902. PubMed ID: 10200224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride-sensitive MEQ fluorescence in chick embryo motoneurons following manipulations of chloride and during spontaneous network activity.
    Chub N; Mentis GZ; O'donovan MJ
    J Neurophysiol; 2006 Jan; 95(1):323-30. PubMed ID: 16192339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord.
    Wenner P; O'Donovan MJ
    J Neurophysiol; 2001 Sep; 86(3):1481-98. PubMed ID: 11535692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo.
    O'Donovan M; Ho S; Yee W
    J Neurosci; 1994 Nov; 14(11 Pt 1):6354-69. PubMed ID: 7965041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical imaging of neuronal activity in tissue labeled by retrograde transport of Calcium Green Dextran.
    McPherson DR; McClellan AD; O'Donovan MJ
    Brain Res Brain Res Protoc; 1997 May; 1(2):157-64. PubMed ID: 9385080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of voltage-sensitive fluorescence dyes for monitoring neuronal activity in the embryonic central nervous system.
    Habib-E-Rasul Mullah S; Komuro R; Yan P; Hayashi S; Inaji M; Momose-Sato Y; Loew LM; Sato K
    J Membr Biol; 2013 Sep; 246(9):679-88. PubMed ID: 23975337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes.
    O'Donovan MJ; Ho S; Sholomenko G; Yee W
    J Neurosci Methods; 1993 Feb; 46(2):91-106. PubMed ID: 8474261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium imaging of motoneuron activity in the en-bloc spinal cord preparation of the neonatal rat.
    Lev-Tov A; O'Donovan MJ
    J Neurophysiol; 1995 Sep; 74(3):1324-34. PubMed ID: 7500153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures.
    Honig MG; Hume RI
    J Cell Biol; 1986 Jul; 103(1):171-87. PubMed ID: 2424918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic responses of frog motoneurons produced by antidromic activation.
    Czéh G
    Neuroscience; 1976 Dec; 1(6):469-75. PubMed ID: 11370239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes.
    Momose-Sato Y; Mochida H; Kinoshita M
    Eur J Neurosci; 2009 Jan; 29(1):1-13. PubMed ID: 19077122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in the effects of serotonin and N-methyl-D-aspartate on intrinsic membrane properties of embryonic chick motoneurons.
    Muramoto T; Mendelson B; Phelan KD; Garcia-Rill E; Skinner RD; Puskarich-May C
    Neuroscience; 1996 Nov; 75(2):607-18. PubMed ID: 8931023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel naphthylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis.
    Obaid AL; Loew LM; Wuskell JP; Salzberg BM
    J Neurosci Methods; 2004 Apr; 134(2):179-90. PubMed ID: 15003384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifications of motoneuron development following transplantation of thoracic spinal cord to the lumbar region in the chick embryo: evidence for target-derived signals that regulate differentiation.
    Yin QW; Oppenheim RW
    J Neurobiol; 1992 Jun; 23(4):376-95. PubMed ID: 1634886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical signals from neurons with internally applied voltage-sensitive dyes.
    Antić S; Zecević D
    J Neurosci; 1995 Feb; 15(2):1392-405. PubMed ID: 7869106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of vagal afferent projections circumflex to the obex in the embryonic chick brainstem visualized with voltage-sensitive dye recording.
    Momose-Sato Y; Kinoshita M; Sato K
    Neuroscience; 2007 Aug; 148(1):140-50. PubMed ID: 17629626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscopic studies of serially sectioned cat spinal alpha-motoneurons. I. Effects of microelectrode impalement and intracellular staining with the fluorescent dye "Procion Yellow".
    Berthold CH; Kellerth JO; Conradi S
    J Comp Neurol; 1979 Apr; 184(4):709-40. PubMed ID: 84820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.