These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9008390)

  • 1. Characterization of a new antifungal chitin-binding peptide from sugar beet leaves.
    Nielsen KK; Nielsen JE; Madrid SM; Mikkelsen JD
    Plant Physiol; 1997 Jan; 113(1):83-91. PubMed ID: 9008390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New antifungal proteins from sugar beet (Beta vulgaris L.) showing homology to non-specific lipid transfer proteins.
    Nielsen KK; Nielsen JE; Madrid SM; Mikkelsen JD
    Plant Mol Biol; 1996 Jun; 31(3):539-52. PubMed ID: 8790287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants.
    Nielsen KK; Mikkelsen JD; Kragh KM; Bojsen K
    Mol Plant Microbe Interact; 1993; 6(4):495-506. PubMed ID: 8400378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity.
    Ponstein AS; Bres-Vloemans SA; Sela-Buurlage MB; van den Elzen PJ; Melchers LS; Cornelissen BJ
    Plant Physiol; 1994 Jan; 104(1):109-18. PubMed ID: 8115541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new type of plant chitinase containing LysM domains from a fern (Pteris ryukyuensis): roles of LysM domains in chitin binding and antifungal activity.
    Onaga S; Taira T
    Glycobiology; 2008 May; 18(5):414-23. PubMed ID: 18310304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris.
    Kragh KM; Nielsen JE; Nielsen KK; Dreboldt S; Mikkelsen JD
    Mol Plant Microbe Interact; 1995; 8(3):424-34. PubMed ID: 7655063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of an ethylene-induced antifungal protein from leaves of guilder rose (Hydrangea macrophylla).
    Yang Q; Gong ZZ
    Protein Expr Purif; 2002 Feb; 24(1):76-82. PubMed ID: 11812226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel antifungal peptide from leaves of the weed Stellaria media L.
    Rogozhin EA; Slezina MP; Slavokhotova AA; Istomina EA; Korostyleva TV; Smirnov AN; Grishin EV; Egorov TA; Odintsova TI
    Biochimie; 2015 Sep; 116():125-32. PubMed ID: 26196691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial characterization and localization of a novel type of antifungal protein (IWF6) isolated from sugar beet leaves.
    Kristensen AK; Brunstedt J; Nielsen JE; Kreiberg JD; Mikkelsen JD; Roepstorff P; Nielsen KK
    Plant Sci; 2000 Oct; 159(1):29-38. PubMed ID: 11011090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of two GH19 chitinase-like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain.
    Martínez-Caballero S; Cano-Sánchez P; Mares-Mejía I; Díaz-Sánchez AG; Macías-Rubalcava ML; Hermoso JA; Rodríguez-Romero A
    FEBS J; 2014 Oct; 281(19):4535-54. PubMed ID: 25104038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis.
    Zareie R; Melanson DL; Murphy PJ
    Mol Plant Microbe Interact; 2002 Oct; 15(10):1031-9. PubMed ID: 12437301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morintides: cargo-free chitin-binding peptides from Moringa oleifera.
    Kini SG; Wong KH; Tan WL; Xiao T; Tam JP
    BMC Plant Biol; 2017 Mar; 17(1):68. PubMed ID: 28359256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of a 30 kDa protein with antifungal activity from leaves of Engelmannia pinnatifida.
    Huynh QK; Borgmeyer JR; Smith CE; Bell LD; Shah DM
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):723-7. PubMed ID: 8670144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves.
    Kristensen AK; Brunstedt J; Nielsen KK; Roepstorff P; Mikkelsen JD
    Plant Sci; 2000 Jun; 155(1):31-40. PubMed ID: 10773337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf.
    Taira T; Toma N; Ishihara M
    Biosci Biotechnol Biochem; 2005 Jan; 69(1):189-96. PubMed ID: 15665484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydroxyproline-containing class IV chitinase of sugar beet is glycosylated with xylose.
    Nielsen KK; Bojsen K; Roepstorff P; Mikkelsen JD
    Plant Mol Biol; 1994 May; 25(2):241-57. PubMed ID: 8018873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba.
    Huang X; Xie W; Gong Z
    FEBS Lett; 2000 Jul; 478(1-2):123-6. PubMed ID: 10922482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves.
    Zhang B; Xie C; Wei Y; Li J; Yang X
    Protein Expr Purif; 2015 Mar; 107():43-9. PubMed ID: 25245535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expressed sequence tags of radish flower buds and characterization of a CONSTANS LIKE 1 gene.
    Moon YH; Chae S; Jung JY; An G
    Mol Cells; 1998 Aug; 8(4):452-8. PubMed ID: 9749533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing, disulfide pattern, and biological activity of a sugar beet defensin, AX2, expressed in Pichia pastoris.
    Kristensen AK; Brunstedt J; Nielsen JE; Mikkelsen JD; Roepstorff P; Nielsen KK
    Protein Expr Purif; 1999 Aug; 16(3):377-87. PubMed ID: 10425158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.