These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9008391)

  • 1. Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses.
    Marrs KA; Walbot V
    Plant Physiol; 1997 Jan; 113(1):93-102. PubMed ID: 9008391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-transcriptional regulation of expression of the Bronze2 gene of Zea mays L.
    Pairoba CF; Walbot V
    Plant Mol Biol; 2003 Sep; 53(1-2):75-86. PubMed ID: 14756308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases.
    Alfenito MR; Souer E; Goodman CD; Buell R; Mol J; Koes R; Walbot V
    Plant Cell; 1998 Jul; 10(7):1135-49. PubMed ID: 9668133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and regulation of the maize Bronze2 promoter.
    Bodeau JP; Walbot V
    Plant Mol Biol; 1996 Nov; 32(4):599-609. PubMed ID: 8980512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2.
    Marrs KA; Alfenito MR; Lloyd AM; Walbot V
    Nature; 1995 Jun; 375(6530):397-400. PubMed ID: 7760932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A carnation anthocyanin mutant is complemented by the glutathione S-transferases encoded by maize Bz2 and petunia An9.
    Larsen ES; Alfenito MR; Briggs WR; Walbot V
    Plant Cell Rep; 2003 Jun; 21(9):900-4. PubMed ID: 12789508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative splicing and differential expression of two transcripts of nicotine adenine dinucleotide phosphate oxidase B gene from Zea mays.
    Lin F; Zhang Y; Jiang MY
    J Integr Plant Biol; 2009 Mar; 51(3):287-98. PubMed ID: 19261072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bronze-2 gene of maize: reconstruction of a wild-type allele and analysis of transcription and splicing.
    Nash J; Luehrsen KR; Walbot V
    Plant Cell; 1990 Nov; 2(11):1039-49. PubMed ID: 1967051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing.
    Clancy M; Hannah LC
    Plant Physiol; 2002 Oct; 130(2):918-29. PubMed ID: 12376656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intron creation and polyadenylation in maize are directed by AU-rich RNA.
    Luehrsen KR; Walbot V
    Genes Dev; 1994 May; 8(9):1117-30. PubMed ID: 7926791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic silencing and unstable inheritance of MuDR activity monitored at four bz2-mu alleles in maize (Zea mays L.).
    Takumi S; Walbot V
    Genes Genet Syst; 2007 Oct; 82(5):387-401. PubMed ID: 17991994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bronze-2 Gene Expression and Intron Splicing Patterns in Cells and Tissues of Zea mays L.
    Nash J; Walbot V
    Plant Physiol; 1992 Sep; 100(1):464-71. PubMed ID: 16652984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of a mutable bz2 allele of maize by transposon tagging and differential hybridization.
    McLaughlin M; Walbot V
    Genetics; 1987 Dec; 117(4):771-6. PubMed ID: 2828160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulated transcription of the maize Bronze-2 promoter in electroporated protoplasts requires the C1 and R gene products.
    Bodeau JP; Walbot V
    Mol Gen Genet; 1992 Jun; 233(3):379-87. PubMed ID: 1620095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance.
    Dominguez-Solís JR; Gutierrez-Alcalá G; Vega JM; Romero LC; Gotor C
    J Biol Chem; 2001 Mar; 276(12):9297-302. PubMed ID: 11121418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo analysis of intron processing using splicing-dependent reporter gene assays.
    Carle-Urioste JC; Ko CH; Benito MI; Walbot V
    Plant Mol Biol; 1994 Dec; 26(6):1785-95. PubMed ID: 7858217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression patterns of glutathione transferase gene (GstI) in maize seedlings under juglone-induced oxidative stress.
    Sytykiewicz H
    Int J Mol Sci; 2011; 12(11):7982-95. PubMed ID: 22174645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction.
    Sun W; Chen H; Wang J; Sun HW; Yang SK; Sang YL; Lu XB; Xu XH
    Funct Integr Genomics; 2015 Jan; 15(1):107-20. PubMed ID: 25388988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the kinase activity of the MIK GCK-like MAP4K by alternative splicing.
    Castells E; Puigdomènech P; Casacuberta JM
    Plant Mol Biol; 2006 Jul; 61(4-5):747-56. PubMed ID: 16897489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic regulation and photocontrol of anthocyanin accumulation in maize seedlings.
    Taylor LP; Briggs WR
    Plant Cell; 1990 Feb; 2(2):115-27. PubMed ID: 2136630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.