These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9008410)

  • 1. Calcium biosensing with a sol-gel immobilized photoprotein.
    Blyth DJ; Poynter SJ; Russell DA
    Analyst; 1996 Dec; 121(12):1975-8. PubMed ID: 9008410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-synthetic aequorin. An improved tool for the measurement of calcium ion concentration.
    Shimomura O; Musicki B; Kishi Y
    Biochem J; 1988 Apr; 251(2):405-10. PubMed ID: 3401214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral components of bioluminescence of aequorin and obelin.
    Belogurova NV; Kudryasheva NS; Alieva RR; Sizykh AG
    J Photochem Photobiol B; 2008 Aug; 92(2):117-22. PubMed ID: 18602272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent Protein-photoprotein Fusions and Their Applications in Calcium Imaging.
    Bakayan A; Domingo B; Vaquero CF; Peyriéras N; Llopis J
    Photochem Photobiol; 2017 Mar; 93(2):448-465. PubMed ID: 27925224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins.
    Markova SV; Vysotski ES; Blinks JR; Burakova LP; Wang BC; Lee J
    Biochemistry; 2002 Feb; 41(7):2227-36. PubMed ID: 11841214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion of Aequorea victoria GFP and aequorin provides their Ca(2+)-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer.
    Gorokhovatsky AY; Marchenkov VV; Rudenko NV; Ivashina TV; Ksenzenko VN; Burkhardt N; Semisotnov GV; Vinokurov LM; Alakhov YB
    Biochem Biophys Res Commun; 2004 Jul; 320(3):703-11. PubMed ID: 15240105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioluminescence resonance energy transfer from aequorin to a fluorophore: an artificial jellyfish for applications in multianalyte detection.
    Deo SK; Mirasoli M; Daunert S
    Anal Bioanal Chem; 2005 Apr; 381(7):1387-94. PubMed ID: 15731912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aequorin as a sensitive and selective reporter for detection of dopamine: A photoprotein inhibition assay approach.
    Rahmani H; Sajedi RH
    Int J Biol Macromol; 2019 Feb; 122():677-683. PubMed ID: 30391428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bounds on the estimation of calcium by aequorin luminescence in the presence of inhomogeneity.
    Stern MD
    Biophys J; 1985 Nov; 48(5):853-7. PubMed ID: 4074842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of hydromedusan Ca(2+)-regulated photoproteins as a tool for measurement of Ca(2+)concentration.
    Malikova NP; Burakova LP; Markova SV; Vysotski ES
    Anal Bioanal Chem; 2014 Sep; 406(23):5715-26. PubMed ID: 25012352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of Ca²⁺ concentration with recombinant targeted luminescent probes.
    Ottolini D; Calì T; Brini M
    Methods Mol Biol; 2013; 937():273-91. PubMed ID: 23007593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioluminescent and biochemical properties of Cys-free Ca
    Eremeeva EV; Vysotski ES
    J Photochem Photobiol B; 2017 Sep; 174():97-105. PubMed ID: 28756158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, expression, purification and characterization of an isotype of clytin, a calcium-binding photoprotein from the luminous hydromedusa Clytia gregarium.
    Inouye S
    J Biochem; 2008 May; 143(5):711-7. PubMed ID: 18296715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescence of aequorin is triggered by the binding of two calcium ions.
    Shimomura O
    Biochem Biophys Res Commun; 1995 Jun; 211(2):359-63. PubMed ID: 7794244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays.
    Chang G; Tatsu Y; Goto T; Imaishi H; Morigaki K
    Talanta; 2010 Nov; 83(1):61-5. PubMed ID: 21035644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The light-sensitive photoprotein berovin from the bioluminescent ctenophore Beroe abyssicola: a novel type of Ca(2+) -regulated photoprotein.
    Markova SV; Burakova LP; Golz S; Malikova NP; Frank LA; Vysotski ES
    FEBS J; 2012 Mar; 279(5):856-70. PubMed ID: 22230281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new low-Ca²⁺ affinity GAP indicator to monitor high Ca²⁺ in organelles by luminescence.
    Rodríguez-Prados M; Rojo-Ruiz J; Aulestia FJ; García-Sancho J; Alonso MT
    Cell Calcium; 2015 Dec; 58(6):558-64. PubMed ID: 26412347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aequorin luminescence: relation of light emission to calcium concentration--a calcium-independent component.
    Allen DG; Blinks JR; Prendergast FG
    Science; 1977 Mar; 195(4282):996-8. PubMed ID: 841325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional imaging of brain tissue calcium ions using aequorin.
    Hashimoto K; Kikuchi H; Ishikawa M; Kobayashi S
    J Cereb Blood Flow Metab; 1992 Mar; 12(2):306-10. PubMed ID: 1548304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca
    Eremeeva EV; Bartsev SI; van Berkel WJ; Vysotski ES
    Photochem Photobiol; 2017 Mar; 93(2):495-502. PubMed ID: 27861964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.