These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 9008700)
1. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. Kim E; Du L; Bregman DB; Warren SL J Cell Biol; 1997 Jan; 136(1):19-28. PubMed ID: 9008700 [TBL] [Abstract][Full Text] [Related]
2. A functional interaction between the carboxy-terminal domain of RNA polymerase II and pre-mRNA splicing. Du L; Warren SL J Cell Biol; 1997 Jan; 136(1):5-18. PubMed ID: 9008699 [TBL] [Abstract][Full Text] [Related]
3. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD. Emili A; Shales M; McCracken S; Xie W; Tucker PW; Kobayashi R; Blencowe BJ; Ingles CJ RNA; 2002 Sep; 8(9):1102-11. PubMed ID: 12358429 [TBL] [Abstract][Full Text] [Related]
4. Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. Bregman DB; Du L; van der Zee S; Warren SL J Cell Biol; 1995 Apr; 129(2):287-98. PubMed ID: 7536746 [TBL] [Abstract][Full Text] [Related]
5. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Mortillaro MJ; Blencowe BJ; Wei X; Nakayasu H; Du L; Warren SL; Sharp PA; Berezney R Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8253-7. PubMed ID: 8710856 [TBL] [Abstract][Full Text] [Related]
6. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Misteli T; Spector DL Mol Cell; 1999 Jun; 3(6):697-705. PubMed ID: 10394358 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of RNA polymerase II localization during the cell cycle. Dirks RW; Snaar S Histochem Cell Biol; 1999 May; 111(5):405-10. PubMed ID: 10403120 [TBL] [Abstract][Full Text] [Related]
9. Nuclear distribution of RNA polymerase II in human oocytes from antral follicles: dynamics relative to the transcriptional state and association with splicing factors. Parfenov VN; Davis DS; Pochukalina GN; Kostyuchek D; Murti KG J Cell Biochem; 2000 Apr; 77(4):654-65. PubMed ID: 10771521 [TBL] [Abstract][Full Text] [Related]
10. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. Brody Y; Neufeld N; Bieberstein N; Causse SZ; Böhnlein EM; Neugebauer KM; Darzacq X; Shav-Tal Y PLoS Biol; 2011 Jan; 9(1):e1000573. PubMed ID: 21264352 [TBL] [Abstract][Full Text] [Related]
11. Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo. Rosonina E; Ip JY; Calarco JA; Bakowski MA; Emili A; McCracken S; Tucker P; Ingles CJ; Blencowe BJ Mol Cell Biol; 2005 Aug; 25(15):6734-46. PubMed ID: 16024807 [TBL] [Abstract][Full Text] [Related]
12. A novel SR-related protein specifically interacts with the carboxy-terminal domain (CTD) of RNA polymerase II through a conserved interaction domain. Tanner S; Stagljar I; Georgiev O; Schaffner W; Bourquin JP Biol Chem; 1997 Jun; 378(6):565-71. PubMed ID: 9224939 [TBL] [Abstract][Full Text] [Related]
13. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing. Zeng C; Berget SM Mol Cell Biol; 2000 Nov; 20(21):8290-301. PubMed ID: 11027297 [TBL] [Abstract][Full Text] [Related]
14. On the importance of being co-transcriptional. Neugebauer KM J Cell Sci; 2002 Oct; 115(Pt 20):3865-71. PubMed ID: 12244124 [TBL] [Abstract][Full Text] [Related]
15. The Carboxyl-terminal Domain of RNA Polymerase II Is Not Sufficient to Enhance the Efficiency of Pre-mRNA Capping or Splicing in the Context of a Different Polymerase. Natalizio BJ; Robson-Dixon ND; Garcia-Blanco MA J Biol Chem; 2009 Mar; 284(13):8692-702. PubMed ID: 19176527 [TBL] [Abstract][Full Text] [Related]
16. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II. Bourquin JP; Stagljar I; Meier P; Moosmann P; Silke J; Baechi T; Georgiev O; Schaffner W Nucleic Acids Res; 1997 Jun; 25(11):2055-61. PubMed ID: 9153302 [TBL] [Abstract][Full Text] [Related]
17. Fixation-induced redistribution of hyperphosphorylated RNA polymerase II in the nucleus of human cells. Guillot PV; Xie SQ; Hollinshead M; Pombo A Exp Cell Res; 2004 May; 295(2):460-8. PubMed ID: 15093744 [TBL] [Abstract][Full Text] [Related]
18. Enhanced phosphorylation of the C-terminal domain of RNA polymerase II upon serum stimulation of quiescent cells: possible involvement of MAP kinases. Dubois MF; Nguyen VT; Dahmus ME; Pagès G; Pouysségur J; Bensaude O EMBO J; 1994 Oct; 13(20):4787-97. PubMed ID: 7957047 [TBL] [Abstract][Full Text] [Related]
19. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Guo YE; Manteiga JC; Henninger JE; Sabari BR; Dall'Agnese A; Hannett NM; Spille JH; Afeyan LK; Zamudio AV; Shrinivas K; Abraham BJ; Boija A; Decker TM; Rimel JK; Fant CB; Lee TI; Cisse II; Sharp PA; Taatjes DJ; Young RA Nature; 2019 Aug; 572(7770):543-548. PubMed ID: 31391587 [TBL] [Abstract][Full Text] [Related]
20. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: correlations with gene activity and transcript processing. Weeks JR; Hardin SE; Shen J; Lee JM; Greenleaf AL Genes Dev; 1993 Dec; 7(12A):2329-44. PubMed ID: 8253380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]