BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9008836)

  • 1. Signal transduction molecules in the rat pineal organ: Ca2+, pCREB, and ICER.
    Korf HW; Schomerus C; Maronde E; Stehle JH
    Naturwissenschaften; 1996 Dec; 83(12):535-43. PubMed ID: 9008836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal transduction in the rodent pineal organ. From the membrane to the nucleus.
    Maronde E; Pfeffer M; von Gall C; Dehghani F; Schomerus C; Wicht H; Kroeber S; Olcese J; Stehle JH; Korf HW
    Adv Exp Med Biol; 1999; 460():109-31. PubMed ID: 10810507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice.
    von Gall C; Lewy A; Schomerus C; Vivien-Roels B; Pevét P; Korf HW; Stehle JH
    Eur J Neurosci; 2000 Mar; 12(3):964-72. PubMed ID: 10762326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factors in neuroendocrine regulation: rhythmic changes in pCREB and ICER levels frame melatonin synthesis.
    Maronde E; Pfeffer M; Olcese J; Molina CA; Schlotter F; Dehghani F; Korf HW; Stehle JH
    J Neurosci; 1999 May; 19(9):3326-36. PubMed ID: 10212292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of CREB phosphorylation and its role for induction of melatonin synthesis in rat pinealocytes.
    Maronde E; Schomerus C; Stehle JH; Korf HW
    Biol Cell; 1997 Nov; 89(8):505-11. PubMed ID: 9618900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense experiments reveal molecular details on mechanisms of ICER suppressing cAMP-inducible genes in rat pinealocytes.
    Pfeffer M; Maronde E; Korf HW; Stehle JH
    J Pineal Res; 2000 Aug; 29(1):24-33. PubMed ID: 10949537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyses of signal transduction cascades reveal an essential role of calcium ions for regulation of melatonin biosynthesis in the light-sensitive pineal organ of the rainbow trout (Oncorhynchus mykiss).
    Kroeber S; Meissl H; Maronde E; Korf HW
    J Neurochem; 2000 Jun; 74(6):2478-89. PubMed ID: 10820209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pineal organ, its hormone melatonin, and the photoneuroendocrine system.
    Korf HW; Schomerus C; Stehle JH
    Adv Anat Embryol Cell Biol; 1998; 146():1-100. PubMed ID: 9670565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic transcription: the molecular basis of circadian melatonin synthesis.
    Foulkes NS; Whitmore D; Sassone-Corsi P
    Biol Cell; 1997 Nov; 89(8):487-94. PubMed ID: 9618898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducible cyclic AMP early repressor protein in rat pinealocytes: a highly sensitive natural reporter for regulated gene transcription.
    Pfeffer M; Maronde E; Molina CA; Korf HW; Stehle JH
    Mol Pharmacol; 1999 Aug; 56(2):279-89. PubMed ID: 10419546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dephosphorylation of pCREB by protein serine/threonine phosphatases is involved in inactivation of Aanat gene transcription in rat pineal gland.
    Koch M; Mauhin V; Stehle JH; Schomerus C; Korf HW
    J Neurochem; 2003 Apr; 85(1):170-9. PubMed ID: 12641739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of cell signalling in the rodent pineal gland deciphers regulators of dynamic transcription in neural/endocrine cells.
    Stehle JH; von Gall C; Korf HW
    Eur J Neurosci; 2001 Jul; 14(1):1-9. PubMed ID: 11488943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Norepinephrine stimulation of pineal cyclic AMP response element-binding protein phosphorylation: primary role of a beta-adrenergic receptor/cyclic AMP mechanism.
    Roseboom PH; Klein DC
    Mol Pharmacol; 1995 Mar; 47(3):439-49. PubMed ID: 7700241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pineal gene expression: dawn in a dark matter.
    Stehle JH
    J Pineal Res; 1995 May; 18(4):179-90. PubMed ID: 8531048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional control of circadian hormone synthesis via the CREM feedback loop.
    Foulkes NS; Borjigin J; Snyder SH; Sassone-Corsi P
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):14140-5. PubMed ID: 8943074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhythmic variation in beta1-adrenergic receptor mRNA levels in the rat pineal gland: circadian and developmental regulation.
    Pfeffer M; Kühn R; Krug L; Korf HW; Stehle JH
    Eur J Neurosci; 1998 Sep; 10(9):2896-904. PubMed ID: 9758159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A differential role of CREB phosphorylation in cAMP-inducible gene expression in the rat pineal.
    Spessert R; Rapp M; Jastrow H; Karabul N; Blum F; Vollrath L
    Brain Res; 2000 May; 864(2):270-80. PubMed ID: 10802034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semiquantitative image-analytical method for the recording of dose-response curves in immunocytochemical preparations.
    Wicht H; Maronde E; Olcese J; Korf HW
    J Histochem Cytochem; 1999 Mar; 47(3):411-20. PubMed ID: 10026243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rhythm and blues of gene expression in the rodent pineal gland.
    Karolczak M; Korf HW; Stehle JH
    Endocrine; 2005 Jul; 27(2):89-100. PubMed ID: 16217122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement for cAMP-response element (CRE) binding protein/CRE modulator transcription factors in thyrotropin-induced proliferation of dog thyroid cells in primary culture.
    Uyttersprot N; Costagliola S; Dumont JE; Miot F
    Eur J Biochem; 1999 Jan; 259(1-2):370-8. PubMed ID: 9914516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.