BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 9008894)

  • 1. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil.
    Deschênes L; Lafrance P; Villeneuve JP; Samson R
    Appl Microbiol Biotechnol; 1996 Dec; 46(5-6):638-46. PubMed ID: 9008894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil.
    Viñas M; Sabaté J; Espuny MJ; Solanas AM
    Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study.
    Byss M; Elhottová D; Tříska J; Baldrian P
    Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons.
    Makkar RS; Rockne KJ
    Environ Toxicol Chem; 2003 Oct; 22(10):2280-92. PubMed ID: 14551990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.
    Bezza FA; Chirwa EM
    Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioremediation of phenols and polycyclic aromatic hydrocarbons in creosote contaminated soil using ex-situ landtreatment.
    Guerin TF
    J Hazard Mater; 1999 Mar; 65(3):305-15. PubMed ID: 10337404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation.
    Posada-Baquero R; Grifoll M; Ortega-Calvo JJ
    Sci Total Environ; 2019 Jun; 668():790-796. PubMed ID: 30870747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.
    Wang L; Li F; Zhan Y; Zhu L
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14451-61. PubMed ID: 27068902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil.
    Sabaté J; Viñas M; Solanas AM
    Chemosphere; 2006 Jun; 63(10):1648-59. PubMed ID: 16325226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteria involved in biodegradation of creosote PAH - A case study of long-term contaminated industrial area.
    Smułek W; Sydow M; Zabielska-Matejuk J; Kaczorek E
    Ecotoxicol Environ Saf; 2020 Jan; 187():109843. PubMed ID: 31678701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil.
    Bengtsson G; Törneman N; Yang X
    Environ Pollut; 2010 Sep; 158(9):2865-71. PubMed ID: 20630638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils.
    Bueno-Montes M; Springael D; Ortega-Calvo JJ
    Environ Sci Technol; 2011 Apr; 45(7):3019-26. PubMed ID: 21375290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed-surfactant-enhanced phytoremediation of PAHs in soil: Bioavailability of PAHs and responses of microbial community structure.
    Lu H; Wang W; Li F; Zhu L
    Sci Total Environ; 2019 Feb; 653():658-666. PubMed ID: 30759591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil.
    Lladó S; Jiménez N; Viñas M; Solanas AM
    Biodegradation; 2009 Sep; 20(5):593-601. PubMed ID: 19153811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil.
    Kulik N; Goi A; Trapido M; Tuhkanen T
    J Environ Manage; 2006 Mar; 78(4):382-91. PubMed ID: 16154683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil.
    Chang JS; Cha DK; Radosevich M; Jin Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):611-6. PubMed ID: 25837563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubilization and desorption of PAHs in soil-aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition.
    Cheng KY; Zhao ZY; Wong JW
    Environ Technol; 2004 Oct; 25(10):1159-65. PubMed ID: 15551830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse.
    Kronenberg M; Trably E; Bernet N; Patureau D
    Environ Pollut; 2017 Dec; 231(Pt 1):509-523. PubMed ID: 28841503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anionic-nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil.
    Shi Z; Chen J; Liu J; Wang N; Sun Z; Wang X
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12769-74. PubMed ID: 26002358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate.
    Margesin R; Schinner F
    Chemosphere; 1999 Jun; 38(15):3463-72. PubMed ID: 10365429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.