These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9008895)

  • 1. Two-step degradation of pyrene by white-rot fungi and soil microorganisms.
    in der Wiesche C; Martens R; Zadrazil F
    Appl Microbiol Biotechnol; 1996 Dec; 46(5-6):653-9. PubMed ID: 9008895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil.
    Martens R; Zadrazil F
    Folia Microbiol (Praha); 1998; 43(1):97-103. PubMed ID: 9616056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora.
    Kotterman MJ; Vis EH; Field JA
    Appl Environ Microbiol; 1998 Aug; 64(8):2853-8. PubMed ID: 9687440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of incubation temperature on activity of ligninolytic enzymes in sterile soil by Pleurotus sp. and Dichomitus squalens.
    Lang E; Gonser A; Zadrazil F
    J Basic Microbiol; 2000; 40(1):33-9. PubMed ID: 10746197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of single and multiple applications of pyrene on the evolution of pyrene catabolism in soil.
    Macleod CJ; Semple KT
    Environ Pollut; 2006 Feb; 139(3):455-60. PubMed ID: 16112311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of microbial pyrene and benzo[a]pyrene mineralization in liquid medium, soil slurry, and soil.
    Derz K; Schmidt B; Schwiening S; Schuphan I
    J Environ Sci Health B; 2006; 41(5):471-84. PubMed ID: 16785161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Necrophytoremediation of phenanthrene and pyrene in contaminated soil.
    Shahsavari E; Adetutu EM; Anderson PA; Ball AS
    J Environ Manage; 2013 Jun; 122():105-12. PubMed ID: 23567029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi.
    Novotný C; Erbanová P; Sasek V; Kubátová A; Cajthaml T; Lang E; Krahl J; Zadrazil F
    Biodegradation; 1999 Jun; 10(3):159-68. PubMed ID: 10492884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of pyrene by immobilized microorganisms in saline-alkaline soil.
    Wang S; Li X; Liu W; Li P; Kong L; Ren W; Wu H; Tu Y
    J Environ Sci (China); 2012; 24(9):1662-9. PubMed ID: 23520875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.).
    Chen YC; Banks MK; Schwab AP
    Environ Sci Technol; 2003 Dec; 37(24):5778-82. PubMed ID: 14717195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing pyrene mineralization in contaminated soil by the addition of humic acids or composted contaminated soil.
    Haderlein A; Legros R; Ramsay B
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):555-9. PubMed ID: 11549037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrene degradation in forest humus microcosms with or without pine and its mycorrhizal fungus.
    Koivula TT; Salkinoja-Salonen M; Peltola R; Romantschuk M
    J Environ Qual; 2004; 33(1):45-53. PubMed ID: 14964357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat.
    Shahsavari E; Adetutu EM; Taha M; Ball AS
    J Environ Manage; 2015 May; 155():171-6. PubMed ID: 25819570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of pyrene biodegradation by white-rot fungus Polyporus sp. S133.
    Hadibarata T; Kristanti RA; Fulazzaky MA; Nugroho AE
    Biotechnol Appl Biochem; 2012; 59(6):465-70. PubMed ID: 23586956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium.
    Brodkorb TS; Legge RL
    Appl Environ Microbiol; 1992 Sep; 58(9):3117-21. PubMed ID: 1444426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The adaptation of two similar soils to pyrene catabolism.
    Macleod CJ; Semple KT
    Environ Pollut; 2002; 119(3):357-64. PubMed ID: 12166669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi.
    Steffen KT; Hatakka A; Hofrichter M
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):212-7. PubMed ID: 12382066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of pyrene in contaminated soil amended with alternate electron acceptors.
    Nieman JK; Sims RC; McLean JE; Sims JL; Sorensen DL
    Chemosphere; 2001 Aug; 44(5):1265-71. PubMed ID: 11513417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of phenanthrene, pyrene and benzo[a]pyrene during biodegradation of crude oil added to two soils.
    Smith MJ; Lethbridge G; Burns RG
    FEMS Microbiol Lett; 1999 Apr; 173(2):445-52. PubMed ID: 10227173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.